Menu Close

x-R-f-x-f-x-and-f-0-1-prove-f-a-b-f-a-f-b-




Question Number 158687 by mahdipoor last updated on 07/Nov/21
∀x∈R  f(x)=f ′ (x)      and   f(0)=1  prove  f(a+b)=f(a)×f(b)
xRf(x)=f(x)andf(0)=1provef(a+b)=f(a)×f(b)
Answered by mr W last updated on 07/Nov/21
y′=(dy/dx)=y  (dy/y)=dx  ∫(dy/y)=∫dx  ln y−ln C=x  ln (y/C)=x  ⇒y=Ce^x   y(0)=C=1  ⇒y=f(x)=e^x   f(a+b)=e^(a+b) =e^a e^b =f(a)f(b)
y=dydx=ydyy=dxdyy=dxlnylnC=xlnyC=xy=Cexy(0)=C=1y=f(x)=exf(a+b)=ea+b=eaeb=f(a)f(b)
Commented by mahdipoor last updated on 07/Nov/21
can you prove without use e^x  ?
canyouprovewithoutuseex?
Commented by mr W last updated on 07/Nov/21
f(x)=e^x  is the only solution satifying  f′(x)=f(x) and f(0)=1.
f(x)=existheonlysolutionsatifyingf(x)=f(x)andf(0)=1.

Leave a Reply

Your email address will not be published. Required fields are marked *