Menu Close

x-R-f-x-f-x-and-f-0-1-prove-f-a-b-f-a-f-b-




Question Number 158687 by mahdipoor last updated on 07/Nov/21
∀x∈R  f(x)=f ′ (x)      and   f(0)=1  prove  f(a+b)=f(a)×f(b)
$$\forall{x}\in{R}\:\:{f}\left({x}\right)={f}\:'\:\left({x}\right)\:\:\:\:\:\:{and}\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${prove}\:\:{f}\left({a}+{b}\right)={f}\left({a}\right)×{f}\left({b}\right) \\ $$
Answered by mr W last updated on 07/Nov/21
y′=(dy/dx)=y  (dy/y)=dx  ∫(dy/y)=∫dx  ln y−ln C=x  ln (y/C)=x  ⇒y=Ce^x   y(0)=C=1  ⇒y=f(x)=e^x   f(a+b)=e^(a+b) =e^a e^b =f(a)f(b)
$${y}'=\frac{{dy}}{{dx}}={y} \\ $$$$\frac{{dy}}{{y}}={dx} \\ $$$$\int\frac{{dy}}{{y}}=\int{dx} \\ $$$$\mathrm{ln}\:{y}−\mathrm{ln}\:{C}={x} \\ $$$$\mathrm{ln}\:\frac{{y}}{{C}}={x} \\ $$$$\Rightarrow{y}={Ce}^{{x}} \\ $$$${y}\left(\mathrm{0}\right)={C}=\mathrm{1} \\ $$$$\Rightarrow{y}={f}\left({x}\right)={e}^{{x}} \\ $$$${f}\left({a}+{b}\right)={e}^{{a}+{b}} ={e}^{{a}} {e}^{{b}} ={f}\left({a}\right){f}\left({b}\right) \\ $$
Commented by mahdipoor last updated on 07/Nov/21
can you prove without use e^x  ?
$${can}\:{you}\:{prove}\:{without}\:{use}\:{e}^{{x}} \:? \\ $$
Commented by mr W last updated on 07/Nov/21
f(x)=e^x  is the only solution satifying  f′(x)=f(x) and f(0)=1.
$${f}\left({x}\right)={e}^{{x}} \:{is}\:{the}\:{only}\:{solution}\:{satifying} \\ $$$${f}'\left({x}\right)={f}\left({x}\right)\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *