Menu Close

x-R-f-x-f-x-prove-f-x-y-f-x-f-y-




Question Number 158671 by mahdipoor last updated on 07/Nov/21
∀x∈R ; f(x)=f ′(x)  prove f(x+y)=f(x)f(y)
xR;f(x)=f(x)provef(x+y)=f(x)f(y)
Commented by mr W last updated on 07/Nov/21
generally  for f(x+y)=f(x)f(y) we have   f(x)=a^x  (a>0)  f′(x)=(ln a)a^x ≠f(x) (except a=e)  therefore  f′(x)=f(x) doesn′t mean   f(x+y)=f(x)f(y)  and f(x+y)=f(x)f(y) doesn′t mean   f′(x)=f(x).
generallyforf(x+y)=f(x)f(y)wehavef(x)=ax(a>0)f(x)=(lna)axf(x)(excepta=e)thereforef(x)=f(x)doesntmeanf(x+y)=f(x)f(y)andf(x+y)=f(x)f(y)doesntmeanf(x)=f(x).
Commented by mr W last updated on 07/Nov/21
you can′t prove because it′s not true.  example f(x)=10e^x .  you have f′(x)=10e^x =f(x)  but f(x+y)=10e^(x+y)   f(x)f(y)=10e^x ×10e^y =100e^(x+y)   f(x+y)≠f(x)f(y)
youcantprovebecauseitsnottrue.examplef(x)=10ex.youhavef(x)=10ex=f(x)butf(x+y)=10ex+yf(x)f(y)=10ex×10ey=100ex+yf(x+y)f(x)f(y)
Commented by mahdipoor last updated on 07/Nov/21
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *