Menu Close

x-R-log-2-x-2-3-log-2-2x-3-28-




Question Number 165178 by cortano1 last updated on 27/Jan/22
  x∈R ⇒ ∣ log _2 ((x/2))∣^3 +∣log _2 (2x)∣^3 =28
xRlog2(x2)3+log2(2x)3=28
Answered by aleks041103 last updated on 27/Jan/22
log_2 (x/2)=log_2 x−1  log_2 (2x)=log_2 x+1  ⇒let t=log_2 x  ∣t+1∣^3 +∣t−1∣^3 =28=f(t)  f(−t)=∣1−t∣^3 +∣−t−1∣^3 =  =∣t+1∣^3 +∣t−1∣^3 =f(t)  f(t) is even    1)t≤−1:  ∣t+1∣=−t−1  ∣t−1∣=1−t  ⇒(1−t)^3 −(1+t)^3 =28  −2t(1−2t+t^2 +1+2t+t^2 +1−t^2 )=28  −2t(3+t^2 )=28  −2t^3 −6t=28  p(t)=t^3 +3t+14=0  p′(t)=3t^2 +3>0  ⇒p(t) is strictly increasing  ⇒ has at most 1 root.  by obs. t=−2 is a sol. and also t=−2≤−1.✓    2)0≥t≥−1:  ∣t+1∣=t+1  ∣t−1∣=1−t  (1+t)^3 +(1−t)^3 =28  2(1+2t+t^2 +1−2t+t^2 −1+t^2 )=28  3t^2 −13=0  ⇒t=±(√((13)/3))∉[−1,0]  ⇒ no sol. in [−1,0].    f(t) is even ⇒ all sols. are t=±2  ⇒log_2 x=±2  ⇒x=2^(±2)   ⇒x=(1/4) and x=4
log2(x/2)=log2x1log2(2x)=log2x+1lett=log2xt+13+t13=28=f(t)f(t)=∣1t3+t13==∣t+13+t13=f(t)f(t)iseven1)t1:t+1∣=t1t1∣=1t(1t)3(1+t)3=282t(12t+t2+1+2t+t2+1t2)=282t(3+t2)=282t36t=28p(t)=t3+3t+14=0p(t)=3t2+3>0p(t)isstrictlyincreasinghasatmost1root.byobs.t=2isasol.andalsot=21.2)0t1:t+1∣=t+1t1∣=1t(1+t)3+(1t)3=282(1+2t+t2+12t+t21+t2)=283t213=0t=±133[1,0]nosol.in[1,0].f(t)isevenallsols.aret=±2log2x=±2x=2±2x=14andx=4
Answered by MJS_new last updated on 27/Jan/22
x=2^t   ∣t−1∣^3 +∣t+1∣^3 =28  (1) t≤−1       t^3 +3t+14=0 ⇒ t=−2  (2) −1<t≤1       t^2 −((13)/3)=0 ⇒ no solution  (3) 1<t       t^3 +3t−14=0 ⇒ t=2  ⇒  x=(1/4)∨x=4
x=2tt13+t+13=28(1)t1t3+3t+14=0t=2(2)1<t1t2133=0nosolution(3)1<tt3+3t14=0t=2x=14x=4

Leave a Reply

Your email address will not be published. Required fields are marked *