Menu Close

x-R-positive-real-numbers-Prove-that-x-2-2-x-3-




Question Number 58600 by naka3546 last updated on 26/Apr/19
x  ∈  R^+  (positive  real  numbers)  Prove  that                   x^2  + (2/x)  ≥  3
$${x}\:\:\in\:\:\mathbb{R}^{+} \:\left({positive}\:\:{real}\:\:{numbers}\right) \\ $$$${Prove}\:\:{that}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{x}}\:\:\geqslant\:\:\mathrm{3} \\ $$
Answered by tanmay last updated on 26/Apr/19
x^3 −3x+2  x^3 −3x+3−1  x^3 −1−3(x−1)  (x−1)(x^2 +x+1)−3(x−1)  (x−1)(x^2 +x+1−3)  (x−1)(x^2 +2x−x−2)  (x−1){x(x+2)−1(x+2)}  (x+2)(x−1)^2   (x+2)>0  and (x−1)^2 ≥0  when x=1    so   x^3 −3x+2≥0  x^2 −3+(2/x)≥0  x^2 +(2/x)≥3
$${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{2} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{3}−\mathrm{1} \\ $$$${x}^{\mathrm{3}} −\mathrm{1}−\mathrm{3}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\mathrm{3}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}−\mathrm{3}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−{x}−\mathrm{2}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left\{{x}\left({x}+\mathrm{2}\right)−\mathrm{1}\left({x}+\mathrm{2}\right)\right\} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\left({x}+\mathrm{2}\right)>\mathrm{0}\:\:{and}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0}\:\:{when}\:{x}=\mathrm{1} \\ $$$$ \\ $$$${so}\:\:\:{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{2}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}+\frac{\mathrm{2}}{{x}}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{2}}{{x}}\geqslant\mathrm{3} \\ $$$$ \\ $$
Answered by salahahmed last updated on 26/Apr/19

Leave a Reply

Your email address will not be published. Required fields are marked *