Menu Close

x-sin-x-1-cos-x-dx-




Question Number 112847 by bemath last updated on 10/Sep/20
 ∫ ((x−sin x)/(1−cos x)) dx ?
xsinx1cosxdx?
Answered by bobhans last updated on 10/Sep/20
I = ∫ ((x−sin x)/(1−cos x)) dx = ∫ ((x−2sin ((x/2))cos ((x/2)))/(2sin^2 ((x/2)))) dx  I=(1/2)∫ x cosec^2 ((x/2)) dx−∫ cot ((x/2))dx  I_1 =(1/2)∫x cosec^2 ((x/2)) dx = −∫x d(cot ((x/2)))  =−(x.cot ((x/2)))+∫ cot ((x/2))dx  I= I_1 −∫cot ((x/2))dx   I= −xcot ((x/2))+∫cot ((x/2))dx−∫cot ((x/2))dx  I= −x cot ((x/2))+ c
I=xsinx1cosxdx=x2sin(x2)cos(x2)2sin2(x2)dxI=12xcosec2(x2)dxcot(x2)dxI1=12xcosec2(x2)dx=xd(cot(x2))=(x.cot(x2))+cot(x2)dxI=I1cot(x2)dxI=xcot(x2)+cot(x2)dxcot(x2)dxI=xcot(x2)+c
Commented by bemath last updated on 10/Sep/20
santuuuyyy
santuuuyyy

Leave a Reply

Your email address will not be published. Required fields are marked *