Question Number 56401 by harish 12@g last updated on 16/Mar/19
$$\int\frac{{x}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 16/Mar/19
$${I}\:=\int\:\:\frac{{x}}{\mathrm{1}+{cosx}}{dx}\:+\int\:\:\frac{{sinx}}{\mathrm{1}+{cosx}}{dx}\:\:\:\:\:\:{we}\:{have}\:\int\:\frac{{sinx}}{\mathrm{1}+{cosx}}{dx}\:=−{ln}\mid\mathrm{1}+{cosx}\mid\:+{c}_{\mathrm{1}} \\ $$$$\int\:\:\frac{{x}}{\mathrm{1}+{cosx}}{dx}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\:\:\:\int\:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\mathrm{4}\:\int\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:=\mathrm{2}\:\int\:{arctan}\left({t}\right){dt}\: \\ $$$$=\mathrm{2}\left\{{tarctan}\left({t}\right)−\int\:\:\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\right\}\:=\mathrm{2}\left\{{t}\:{arctan}\left({t}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right\}\:+{c}_{\mathrm{2}} \\ $$$$=\mathrm{2}{tan}\left(\frac{{x}}{\mathrm{2}}\right)\frac{{x}}{\mathrm{2}}\:−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:+{c}_{\mathrm{2}} \:\:={x}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\:+{c}_{\mathrm{2}} \:\Rightarrow\right. \\ $$$${I}\:=−{ln}\mid\mathrm{1}+{cosx}\mid\:+{x}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\:+{C}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19
$$\int\frac{{x}+\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\int\left(\frac{\mathrm{1}}{\mathrm{2}}×{xsec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+{tan}\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$$\int\left[{x}×\frac{{d}}{{dx}}\left({tan}\frac{{x}}{\mathrm{2}}\right)+{tan}\frac{{x}}{\mathrm{2}}×\frac{{dx}}{{dx}}\:\right]{dx} \\ $$$$\int\frac{{d}}{{dx}}\left({xtan}\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$$\int{d}\left({xtan}\frac{{x}}{\mathrm{2}}\right) \\ $$$${xtan}\frac{{x}}{\mathrm{2}}+{c} \\ $$
Answered by Smail last updated on 16/Mar/19
$$=\int\left(\frac{{x}}{\mathrm{1}+{cosx}}+\frac{{sinx}}{\mathrm{1}+{cosx}}\right){dx} \\ $$$$=\int\left(\frac{{x}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}+\frac{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}\right){dx} \\ $$$$=\int\left(\frac{{x}}{\mathrm{2}{cos}^{\mathrm{2}} {x}/\mathrm{2}}+{tan}\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$$=\int\left({xd}\left({tan}\frac{{x}}{\mathrm{2}}\right)+{tan}\frac{{x}}{\mathrm{2}}{dx}\right)=\int\left({vdu}+{udv}\right) \\ $$$$=\int{d}\left({vu}\right)={vu}+{C} \\ $$$${with}\:\:\:{v}={x}\:{and}\:\:{u}={tan}\frac{{x}}{\mathrm{2}} \\ $$$${Therefore}: \\ $$$$\int\frac{{x}+{sinx}}{\mathrm{1}+{cosx}}{dx}={xtan}\frac{{x}}{\mathrm{2}}+{C} \\ $$