Menu Close

x-sinx-1-cosx-dx-please-help-me-




Question Number 154195 by rexford last updated on 15/Sep/21
∫((x+sinx)/(1+cosx))dx      please,help me
x+sinx1+cosxdxplease,helpme
Answered by qaz last updated on 15/Sep/21
∵ (((sin x)/(1+cos x)))′=(1/(1+cos x))  ∴∫((x+sin x)/(1+cos x))dx  =∫(x/(1+cos x))dx+∫((sin x)/(1+cos x))dx  =∫xd(((sin x)/(1+cos x)))+∫((sin x)/(1+cos x))dx  =((xsin x)/(1+cos x))+C
(sinx1+cosx)=11+cosxx+sinx1+cosxdx=x1+cosxdx+sinx1+cosxdx=xd(sinx1+cosx)+sinx1+cosxdx=xsinx1+cosx+C
Commented by qaz last updated on 15/Sep/21
∫((x−sin x)/(1+cos x))dx......∫((x−sin x)/(1−cos x))dx......∫((x+cos x)/(1+sin x))dx.....∫((x−cos x)/(1+sin x))dx  ∫((x+cos x)/(1−sin x))dx......∫((x−cos x)/(1−sin x))dx.......∫((x+sin x)/(1−cos x))dx  The same ....
xsinx1+cosxdxxsinx1cosxdxx+cosx1+sinxdx..xcosx1+sinxdxx+cosx1sinxdxxcosx1sinxdx.x+sinx1cosxdxThesame.
Answered by puissant last updated on 15/Sep/21
Ω=∫((x+sinx)/(1+cosx))dx  =∫(x/(1+cosx))dx+∫((sinx)/(1+cosx))dx  =∫xsec^2 ((x/2))dx−ln∣cosx∣+C  =xtan((x/2))−∫tan((x/2))dx−ln∣cosx∣+C  =xtan((x/2))+2ln∣cos((x/2))∣−ln∣cosx∣+C    ∴∵ Ω=xtan((x/2))+2ln∣cos((x/2))∣−ln∣cosx∣+C..
Ω=x+sinx1+cosxdx=x1+cosxdx+sinx1+cosxdx=xsec2(x2)dxlncosx+C=xtan(x2)tan(x2)dxlncosx+C=xtan(x2)+2lncos(x2)lncosx+C∴∵Ω=xtan(x2)+2lncos(x2)lncosx+C..
Answered by maged last updated on 15/Sep/21
I=∫(x/(1+cosx)).((1−cosx)/(1−cosx))dx+∫((sinx)/(1+cosx)).((1−cosx)/(1−cosx))dx  =∫((x(1−cosx))/(sin^2 x))dx+∫(1/(sinx))dx  I=∫xcosec^2 xdx−∫xcotxcosecxdx+∫cosecxdx  u=x→du=dx  dv=cosec^2 xdx→v=−cotx   −−  u=x→du=dx  dv=−cotxcosecxdx→v=cosecx  −−  I=−xcotx+xcosecx+∫cotxdx−∫cosecxdx+∫cosecxdx  =xcosecx−xcotx−ln(sinx)+C
I=x1+cosx.1cosx1cosxdx+sinx1+cosx.1cosx1cosxdx=x(1cosx)sin2xdx+1sinxdxI=xcosec2xdxxcotxcosecxdx+cosecxdxu=xdu=dxdv=cosec2xdxv=cotxu=xdu=dxdv=cotxcosecxdxv=cosecxI=xcotx+xcosecx+cotxdxcosecxdx+cosecxdx=xcosecxxcotxln(sinx)+C

Leave a Reply

Your email address will not be published. Required fields are marked *