Menu Close

x-sinx-cosx-1-x-e-x-sinx-dx-




Question Number 42364 by Tawa1 last updated on 24/Aug/18
∫  ((x + sinx − cosx − 1)/(x + e^x  + sinx)) dx
$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{sinx}\:−\:\mathrm{cosx}\:−\:\mathrm{1}}{\mathrm{x}\:+\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{sinx}}\:\mathrm{dx} \\ $$
Commented by maxmathsup by imad last updated on 24/Aug/18
I = ∫ ((x+e^x  +sinx −e^x −cosx −1)/(x+e^x  +sinx))dx =x − ∫   ((e^x  +cosx +1)/(x +e^x  +sinx))dx  =x −ln∣x +e^x  +sinx∣ +c .
$${I}\:=\:\int\:\frac{{x}+{e}^{{x}} \:+{sinx}\:−{e}^{{x}} −{cosx}\:−\mathrm{1}}{{x}+{e}^{{x}} \:+{sinx}}{dx}\:={x}\:−\:\int\:\:\:\frac{{e}^{{x}} \:+{cosx}\:+\mathrm{1}}{{x}\:+{e}^{{x}} \:+{sinx}}{dx} \\ $$$$={x}\:−{ln}\mid{x}\:+{e}^{{x}} \:+{sinx}\mid\:+{c}\:. \\ $$
Commented by maxmathsup by imad last updated on 24/Aug/18
nevermind sir.
$${nevermind}\:{sir}. \\ $$
Commented by Tawa1 last updated on 24/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *