Menu Close

x-t-4x-t-5y-t-y-t-4y-t-




Question Number 13316 by 433 last updated on 18/May/17
 { ((x′(t)=4x(t)+5y(t))),((y′(t)=4y(t))) :}
{x(t)=4x(t)+5y(t)y(t)=4y(t)
Answered by ajfour last updated on 18/May/17
dy=4ydt       ∫(dy/y)=4∫dt  ln ((y/y_0 ))=4t    or  y=y_0 e^(4t)   ....(i)a                      ln y=4t+ln y_0     ....(i)b  (dy/dx)= ((dy/dt)/(dx/dt))  = ((4y)/(4x+5y))            let  y=px     ⇒  (dy/dx) = p+x(dp/dx)  so,      p+x(dp/dx) = ((4y)/(4x+5y))= ((4p)/(4+5p))  x(dp/dx) = ((4p)/(4+5p))−p  x(dp/dx) = −((5p^2 )/(4+5p))  ∫ ((5p+4)/(5p^2 ))dp =−∫ (dx/x)  ∫ (dp/p) +(4/5)∫ (dp/p^2 ) = −∫ (dx/x)  ln p−(4/(5p))=−ln x+C  ln y−ln x−((4x)/(5y)) =−ln x +C  ((4x)/(5y))=ln y−C   and  C=ln y_0 −((4x_0 )/(5y_0 ))  so,    ln ((y/y_0 ))=(4/5)((x/y)−(x_0 /y_0 ))    ...(ii)  further  x=((5y)/4)(ln y−C )  x=(5/4)y_0 e^(4t) (4t+ln y_0 −C )    see (i)    =5y_0 te^(4t) +(5/4)y_0 e^(4t) (ln y_0 −C )  x_0 =(5/4)y_0 (ln y_0 −C )  so,    x= e^(4t) (x_0 +5y_0 t)  .....(iii)            y=y_0 e^(4t)                       .....(i)  and  ln ((y/y_0 ))=(4/5)((x/y)−(x_0 /y_0 ))    ...(ii)  might be the required solution.
dy=4ydtdyy=4dtln(yy0)=4tory=y0e4t.(i)alny=4t+lny0.(i)bdydx=dy/dtdx/dt=4y4x+5ylety=pxdydx=p+xdpdxso,p+xdpdx=4y4x+5y=4p4+5pxdpdx=4p4+5ppxdpdx=5p24+5p5p+45p2dp=dxxdpp+45dpp2=dxxlnp45p=lnx+Clnylnx4x5y=lnx+C4x5y=lnyCandC=lny04x05y0so,ln(yy0)=45(xyx0y0)(ii)furtherx=5y4(lnyC)x=54y0e4t(4t+lny0C)see(i)=5y0te4t+54y0e4t(lny0C)x0=54y0(lny0C)so,x=e4t(x0+5y0t)..(iii)y=y0e4t..(i)andln(yy0)=45(xyx0y0)(ii)mightbetherequiredsolution.
Commented by ajfour last updated on 19/May/17
no response..!
noresponse..!
Commented by 433 last updated on 19/May/17
i would like with eigenvalue and eigenvector
iwouldlikewitheigenvalueandeigenvector

Leave a Reply

Your email address will not be published. Required fields are marked *