Question Number 89918 by jagoll last updated on 20/Apr/20
$$\int\:\frac{\mathrm{x}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\mathrm{dx}\: \\ $$
Commented by john santu last updated on 20/Apr/20
$$\left[\:{u}\:=\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:\Rightarrow{du}\:=\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\right] \\ $$$${v}\:=\:\int\:\frac{{x}\:{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{d}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$\left.{v}\:=\:−\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\right]\: \\ $$$$\Rightarrow\:{I}\:=\:−\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+\:\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$${let}\:{J}\:=\:\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$${x}\:=\:\mathrm{tan}\:{p}\:\Rightarrow{dx}\:=\:\mathrm{sec}\:^{\mathrm{2}} {p}\:{dp} \\ $$$${J}\:=\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} {p}\:{dp}}{\mathrm{sec}\:^{\mathrm{3}} {p}}\:=\:\int\:\mathrm{cos}\:{p}\:{dp} \\ $$$${J}\:=\:\mathrm{sin}\:{p}\:=\:\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${therefore}\:{we}\:{get}\: \\ $$$$\int\:\frac{{x}\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:=\:−\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+\:{c}\: \\ $$$$=\:\frac{{x}−\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+\:{c}\: \\ $$