Menu Close

x-x-1-dy-dx-2x-1-y-0-




Question Number 96596 by bemath last updated on 03/Jun/20
x(x+1) (dy/dx)−(2x+1)y = 0
$${x}\left({x}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}−\left(\mathrm{2}{x}+\mathrm{1}\right){y}\:=\:\mathrm{0} \\ $$
Answered by bobhans last updated on 03/Jun/20
(dy/dx) = ((2x+1)/(x^2 +x)).y ⇒(dy/y) = (((2x+1)dx)/(x^2 +x))  ln∣y∣ = ln∣C(x^2 +x)∣ ⇒ y= C(x^2 +x)
$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +{x}}.{y}\:\Rightarrow\frac{{dy}}{{y}}\:=\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right){dx}}{{x}^{\mathrm{2}} +{x}} \\ $$$$\mathrm{ln}\mid\mathrm{y}\mid\:=\:\mathrm{ln}\mid\mathrm{C}\left({x}^{\mathrm{2}} +{x}\right)\mid\:\Rightarrow\:\mathrm{y}=\:\mathrm{C}\left({x}^{\mathrm{2}} +{x}\right) \\ $$
Answered by mathmax by abdo last updated on 03/Jun/20
x(x+1)y^′ −(2x+1)y =0 ⇒x(x+1)y^′  =(2x+1)y ⇒(y^′ /y) =((2x+1)/(x(x+1)))  ⇒ln∣y∣ =∫  ((2x+1)/(x(x+1)))dx +c  =∫  ((1/x) +(1/(x+1)))dx+c =ln∣x∣ +ln∣x+1∣ +c ⇒  y(x) =k ∣x∣×∣x+1∣ =k∣x^2  +x∣
$$\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} −\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{y}\:=\mathrm{0}\:\Rightarrow\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} \:=\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{y}\:\Rightarrow\frac{\mathrm{y}^{'} }{\mathrm{y}}\:=\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)} \\ $$$$\Rightarrow\mathrm{ln}\mid\mathrm{y}\mid\:=\int\:\:\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{dx}\:+\mathrm{c}\:\:=\int\:\:\left(\frac{\mathrm{1}}{\mathrm{x}}\:+\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}\right)\mathrm{dx}+\mathrm{c}\:=\mathrm{ln}\mid\mathrm{x}\mid\:+\mathrm{ln}\mid\mathrm{x}+\mathrm{1}\mid\:+\mathrm{c}\:\Rightarrow \\ $$$$\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{k}\:\mid\mathrm{x}\mid×\mid\mathrm{x}+\mathrm{1}\mid\:=\mathrm{k}\mid\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}\mid \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *