Question Number 160603 by cortano last updated on 03/Dec/21
$$\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{2021} \\ $$$$\:\forall\mathrm{x},\mathrm{y}\in\mathbb{R}^{+} \:.\:\mathrm{min}\:\left(\mathrm{x}+\mathrm{y}\right)=? \\ $$
Answered by MJS_new last updated on 03/Dec/21
$$\mathrm{of}\:\mathrm{all}\:\mathrm{rectangles}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b}\:\mathrm{and}\:\mathrm{given} \\ $$$$\mathrm{area}\:{a}×{b}={A}\:\mathrm{the}\:\mathrm{square}\:\mathrm{is}\:\mathrm{the}\:\mathrm{one}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{least}\:\mathrm{perimeter}\:\Leftrightarrow\:\mathrm{min}\:\left({a}+{b}\right)\:\mathrm{is}\:\mathrm{at} \\ $$$${a}={b}=\sqrt{{A}} \\ $$$$\Rightarrow\:{y}={x} \\ $$$$\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{2021} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$