Menu Close

x-x-2-2048-x-




Question Number 161951 by mathlove last updated on 24/Dec/21
x^x =2^(2048)   x=?
xx=22048x=?
Answered by aleks041103 last updated on 24/Dec/21
2048=2^(11)   ⇒x^x =2^2^(11)    let x=2^t   (2^t )^2^t  =2^(t.2^t ) =2^2^(11)    ⇒t2^t =2^(11)   f(t)=t.2^t   f is monotonously rising ⇒ there is only 1 solution  f(1)=2<2^(11) ⇒t>1  ⇒2^(11) =t2^t >2^t ⇒t<11  suppose t∈N    t2^t =2^(11) ⇒t=2^(11−t)   ⇒t is a power of 2 and t∈(1,11)  ⇒t=2,4,8  ⇒t=8  ⇒x=2^8 , x^x =2^(8.2^8 ) =2^2^(11)  =2^(2048)   ⇒Ans. x=2^8 =256
2048=211xx=2211letx=2t(2t)2t=2t.2t=2211t2t=211f(t)=t.2tfismonotonouslyrisingthereisonly1solutionf(1)=2<211t>1211=t2t>2tt<11supposetNt2t=211t=211ttisapowerof2andt(1,11)t=2,4,8t=8x=28,xx=28.28=2211=22048Ans.x=28=256
Answered by mr W last updated on 24/Dec/21
2^(2048) =2^2^(11)  =2^(2^a 2^b ) =(2^2^a  )^2^b   with a+b=11  2^2^a  =^(!) 2^b   2^a =b=11−a ⇒a=3, b=11−3=8  2^(2048) =(2^8 )^2^8  =x^x   ⇒x=2^8
22048=2211=22a2b=(22a)2bwitha+b=1122a=!2b2a=b=11aa=3,b=113=822048=(28)28=xxx=28

Leave a Reply

Your email address will not be published. Required fields are marked *