x-x-2-25-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 183806 by cortano1 last updated on 30/Dec/22 ∫x+x2+25xdx=? Answered by Ar Brandon last updated on 30/Dec/22 I=∫x+x2+25xdx,x=5shϑ=∫5shϑ+5chϑ5shϑ(5chϑdϑ)=5∫(e2ϑ+1e2ϑ−1)eϑ2dϑ,ϑ=2ϕ=25∫(e4ϕ+1e4ϕ−1)eϕdϕ=25∫(t4+1t4−1)dt=25∫(1+2t4−1)dt,t=eϕ=25∫(1+1t2−1−1t2+1)dt=25(t+12ln∣t−1t+1∣−arctan(t))+C=25(eϑ2+12ln∣eϑ2−1∣−12ln∣eϑ2+1∣−arctan(eϑ2))+C=25x+x2+25+5ln∣x+x2+25−1x+x2+25+1∣−25arctan(x+x2+25)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-area-of-a-re-Next Next post: x-a-x-1-a-1-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.