Menu Close

x-x-2-8-Find-x-




Question Number 56991 by Tawa1 last updated on 28/Mar/19
  x! − x^2   =  8 ,    Find  x
$$\:\:\mathrm{x}!\:−\:\mathrm{x}^{\mathrm{2}} \:\:=\:\:\mathrm{8}\:,\:\:\:\:\mathrm{Find}\:\:\mathrm{x} \\ $$$$ \\ $$
Commented by Joel578 last updated on 28/Mar/19
x = 4
$${x}\:=\:\mathrm{4} \\ $$
Commented by Tawa1 last updated on 28/Mar/19
Any workings please
$$\mathrm{Any}\:\mathrm{workings}\:\mathrm{please} \\ $$
Commented by MJS last updated on 28/Mar/19
if x∈N we can only try  ⇒ x=4  if x∈R we have to solve this:  Γ(x+1)−x^2 =8  where Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt  and I don′t think we are able to
$$\mathrm{if}\:{x}\in\mathbb{N}\:\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{try} \\ $$$$\Rightarrow\:{x}=\mathrm{4} \\ $$$$\mathrm{if}\:{x}\in\mathbb{R}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)−{x}^{\mathrm{2}} =\mathrm{8} \\ $$$$\mathrm{where}\:\Gamma\left({x}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\mathrm{and}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{are}\:\mathrm{able}\:\mathrm{to} \\ $$
Commented by maxmathsup by imad last updated on 28/Mar/19
sir tawa1 you must first define x!
$${sir}\:{tawa}\mathrm{1}\:{you}\:{must}\:{first}\:{define}\:{x}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *