Question Number 122461 by benjo_mathlover last updated on 17/Nov/20
$$\:\int\:\frac{{x}}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{3}} +{b}^{\mathrm{2}} \right)}\:? \\ $$
Commented by liberty last updated on 17/Nov/20
$$\mathrm{Ostrogradsky}..\mathrm{method}.\: \\ $$
Commented by MJS_new last updated on 17/Nov/20
$$\mathrm{you}\:\mathrm{should}\:\mathrm{search}\:\mathrm{this}\:\mathrm{method}\:\mathrm{on}\:\mathrm{the}\:\mathrm{www} \\ $$$$\mathrm{to}\:\mathrm{learn}\:\mathrm{when}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{use}\:\mathrm{it}.\:\mathrm{here}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{not}\:\mathrm{possible}. \\ $$
Answered by MJS_new last updated on 17/Nov/20
$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{3}} +{b}^{\mathrm{2}} \right)} \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{decompose}…\:\mathrm{I}\:\mathrm{get} \\ $$$${I}={I}_{\mathrm{1}} +{I}_{\mathrm{2}} +{I}_{\mathrm{3}} +{I}_{\mathrm{4}} +{C} \\ $$$${I}_{\mathrm{1}} =\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{6}} +{b}^{\mathrm{4}} }\int\frac{{x}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} \right){b}^{\mathrm{4}/\mathrm{3}} }\int\frac{{dx}}{{x}+{b}^{\mathrm{2}/\mathrm{3}} } \\ $$$${I}_{\mathrm{3}} =−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} }{\mathrm{6}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{4}/\mathrm{3}} }\int\frac{\mathrm{2}{x}−{b}^{\mathrm{2}/\mathrm{3}} }{{x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} }{dx} \\ $$$${I}_{\mathrm{4}} =\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{4}/\mathrm{3}} }{\mathrm{2}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\int\frac{{dx}}{{x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} } \\ $$$$ \\ $$$${I}_{\mathrm{1}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{6}} +{b}^{\mathrm{4}} \right)}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right) \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} \right){b}^{\mathrm{4}/\mathrm{3}} }\mathrm{ln}\:\mid{x}+{b}^{\mathrm{2}/\mathrm{3}} \mid \\ $$$${I}_{\mathrm{3}} =−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} }{\mathrm{6}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{4}/\mathrm{3}} }\mathrm{ln}\:\left({x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} \right) \\ $$$${I}_{\mathrm{4}} =\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{4}/\mathrm{3}} \right)\sqrt{\mathrm{3}}}{\mathrm{3}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{4}/\mathrm{3}} }\mathrm{arctan}\:\frac{\left(\mathrm{2}{x}−{b}^{\mathrm{2}/\mathrm{3}} \right)\sqrt{\mathrm{3}}}{\mathrm{3}{b}^{\mathrm{2}/\mathrm{3}} } \\ $$
Commented by ajfour last updated on 17/Nov/20
$${oops}! \\ $$
Commented by MJS_new last updated on 17/Nov/20
$$\mathrm{sorry}\:\mathrm{wrong}.\:\mathrm{I}\:\mathrm{solved}\:\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{3}} +{b}^{\mathrm{2}} \right)} \\ $$
Commented by benjo_mathlover last updated on 17/Nov/20
$${waw}…. \\ $$
Answered by MJS_new last updated on 17/Nov/20
$$\int\frac{{x}}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{3}} +{b}^{\mathrm{2}} \right)}={J}_{\mathrm{1}} +{J}_{\mathrm{2}} +{J}_{\mathrm{3}} +{J}_{\mathrm{4}} +{J}_{\mathrm{5}} +{C} \\ $$$$ \\ $$$${J}_{\mathrm{1}} =\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{6}} +{b}^{\mathrm{4}} }\int\frac{{x}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx} \\ $$$${J}_{\mathrm{2}} =−\frac{{a}^{\mathrm{4}} }{{a}^{\mathrm{6}} +{b}^{\mathrm{4}} }\int\frac{{dx}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$$${J}_{\mathrm{3}} =−\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\int\frac{{dx}}{{x}+{b}^{\mathrm{2}/\mathrm{3}} } \\ $$$${J}_{\mathrm{4}} =\frac{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{4}/\mathrm{3}} }{\mathrm{6}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\int\frac{\mathrm{2}{x}−{b}^{\mathrm{2}/\mathrm{3}} }{{x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} } \\ $$$${J}_{\mathrm{5}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right)}\int\frac{{dx}}{{x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} } \\ $$$$ \\ $$$${J}_{\mathrm{1}} =\frac{{b}^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{6}} +{b}^{\mathrm{4}} \right)}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right) \\ $$$${J}_{\mathrm{2}} =−\frac{{a}^{\mathrm{3}} }{{a}^{\mathrm{6}} +{b}^{\mathrm{4}} }\mathrm{arctan}\:\frac{{x}}{{a}} \\ $$$${J}_{\mathrm{3}} =−\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{4}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\mathrm{ln}\:\mid{x}+{b}^{\mathrm{2}/\mathrm{3}} \mid \\ $$$${J}_{\mathrm{4}} =\frac{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{4}/\mathrm{3}} }{\mathrm{6}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\mathrm{ln}\:\left({x}^{\mathrm{2}} −{b}^{\mathrm{2}/\mathrm{3}} {x}+{b}^{\mathrm{4}/\mathrm{3}} \right) \\ $$$${J}_{\mathrm{5}} =\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{3}\left({a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{4}/\mathrm{3}} +{b}^{\mathrm{8}/\mathrm{3}} \right){b}^{\mathrm{2}/\mathrm{3}} }\mathrm{arctan}\:\frac{\left(\mathrm{2}{x}−{b}^{\mathrm{2}/\mathrm{3}} \right)\sqrt{\mathrm{3}}}{\mathrm{3}{b}^{\mathrm{2}/\mathrm{3}} } \\ $$