Question Number 185599 by mathlove last updated on 24/Jan/23
$${x}!={x}^{\mathrm{3}} −{x}\:\:\:\:\:\:\:\:\:\:{faind}\:{x}=? \\ $$
Commented by liuxinnan last updated on 24/Jan/23
$$\mathrm{5}!=\mathrm{120} \\ $$$$\mathrm{5}^{\mathrm{3}} −\mathrm{5}=\mathrm{120} \\ $$$${x}<\mathrm{5}\:\:\:\:{x}!<{x}^{\mathrm{3}} −{x} \\ $$$${x}>\mathrm{5}\:\:\:\:\:{x}!>{x}^{\mathrm{3}} −{x} \\ $$
Commented by Rasheed.Sindhi last updated on 24/Jan/23
$${please}\:{write}\:{your}\:{solution}\:{as}\:{answer} \\ $$$${not}\:{as}\:{comment}. \\ $$
Commented by liuxinnan last updated on 24/Jan/23
$${next}\:{must} \\ $$
Answered by Frix last updated on 24/Jan/23
$$\mathrm{There}'\mathrm{s}\:\mathrm{no}\:\mathrm{formula},\:\mathrm{you}\:\mathrm{must}\:\mathrm{try} \\ $$$$\mathrm{1}!=\mathrm{1}\:\:\:\:\:\mathrm{1}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}!=\mathrm{2}\:\:\:\:\:\mathrm{2}^{\mathrm{3}} −\mathrm{2}=\mathrm{6}=\mathrm{3}! \\ $$$$\mathrm{3}!=\mathrm{6}\:\:\:\:\:\mathrm{3}^{\mathrm{3}} −\mathrm{3}=\mathrm{24}=\mathrm{4}! \\ $$$$… \\ $$
Answered by ajfour last updated on 24/Jan/23
$$\left({x}−\mathrm{1}\right)!+\mathrm{1}={x}^{\mathrm{2}} \\ $$$$\left({x}−\mathrm{1}\right)!+\mathrm{1}=\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left({x}−\mathrm{1}\right)+\mathrm{1} \\ $$$$\left({x}−\mathrm{2}\right)!={x}−\mathrm{2}+\mathrm{3} \\ $$$$\left({x}−\mathrm{3}\right)!=\mathrm{1}+\frac{\mathrm{3}}{{x}−\mathrm{2}} \\ $$$${x}>\mathrm{3}\:\:{and}\:{also} \\ $$$$\left({x}−\mathrm{3}\right)!<\mathrm{4} \\ $$$$\Rightarrow\:{x}−\mathrm{3}<\mathrm{3} \\ $$$${x}<\mathrm{6} \\ $$$${so}\:{let}\:{us}\:{try}\:\:\:{x}=\mathrm{4}\:\:{and}\:{x}=\mathrm{5} \\ $$$${I}\:{guess}\:{x}=\mathrm{5}\:{satisfies} \\ $$$$\mathrm{5}!=\mathrm{120} \\ $$$$\mathrm{5}^{\mathrm{3}} −\mathrm{5}=\mathrm{120} \\ $$$${hence}\:{x}=\mathrm{5} \\ $$
Commented by mathlove last updated on 24/Jan/23
$${thanks} \\ $$
Answered by Rasheed.Sindhi last updated on 24/Jan/23
$$\left({x}−\mathrm{2}\right)!\left({x}−\mathrm{1}\right){x}={x}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right) \\ $$$$\:\left({x}−\mathrm{2}\right)!={x}+\mathrm{1} \\ $$$$\left({x}−\mathrm{3}\right)!=\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}−\mathrm{1}+\mathrm{1}\:;\:{x}>\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}}{{x}−\mathrm{2}}+\mathrm{1} \\ $$$${x}−\mathrm{2}\:\mid\:\mathrm{3} \\ $$$${x}−\mathrm{2}=\mathrm{1},\mathrm{3} \\ $$$${x}=\mathrm{3},\mathrm{5} \\ $$$$\mathrm{3}\:{fails},\mathrm{5}\:{is}\:{successful} \\ $$$${x}=\mathrm{5}^{\checkmark} :\:\left(\mathrm{5}−\mathrm{3}\right)!=\frac{\mathrm{3}}{\mathrm{5}−\mathrm{2}}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}=\mathrm{2} \\ $$
Answered by SEKRET last updated on 24/Jan/23
$$\:\boldsymbol{\mathrm{x}}\centerdot\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\centerdot\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)!=\boldsymbol{\mathrm{x}}\centerdot\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right) \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)!=\boldsymbol{\mathrm{x}}−\mathrm{2}+\mathrm{3} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}!=\boldsymbol{\mathrm{a}}+\mathrm{3}\:\:\:\:\boldsymbol{\mathrm{a}}>\mathrm{0} \\ $$$$\:\:\:\mathrm{1}=\mathrm{4} \\ $$$$\:\:\:\:\mathrm{2}=\mathrm{5} \\ $$$$\:\:\:\:\mathrm{6}=\mathrm{6}\:\:\:\:\:\boldsymbol{\mathrm{a}}=\mathrm{3} \\ $$$$\:\mathrm{24}=\mathrm{7}\:\:>> \\ $$$$\:\:\boldsymbol{\mathrm{x}}−\mathrm{2}=\mathrm{3} \\ $$$$\:\:\boldsymbol{\mathrm{x}}=\mathrm{5} \\ $$$$ \\ $$$$ \\ $$✅