Menu Close

x-x-4-1-dx-




Question Number 130287 by naka3546 last updated on 24/Jan/21
∫ (x/(x^4 +1)) dx  =  ?
xx4+1dx=?
Answered by mathmax by abdo last updated on 24/Jan/21
I =∫  ((xdx)/(x^4  +1)) let decompose F(x)=(x/(x^4  +1)) ⇒  F(x)=(x/((x^2 +1)^2 −2x^2 ))=(x/((x^2 +1−(√2)x)(x^(2 ) +1+(√2)x)))  =((ax+b)/(x^2 −(√2)x +1))+((mx+n)/(x^2  +(√2)x+1)) we see[that F(x)=(1/(2(√2)))((1/(x^2 −(√2)x+1))−(1/(x^2 +(√2)x+1)))  ⇒∫ F(x)dx=(1/(2(√2)))∫  (dx/(x^2 −2((√2)/2)x+(1/2)+(1/2)))−(1/(2(√2)))∫ (dx/(x^2  +2((√2)/2)x+(1/2)+(1/2)))  =(1/(2(√2)))∫  (dx/((x−(1/( (√2))))^2  +(1/2)))(→x−(1/( (√2)))=(u/( (√2))))−(1/(2(√2)))∫ (dx/((x+(1/( (√2))))^2  +(1/2)))(→x+(1/( (√2)))=(v/( (√2))))  =(1/(2(√2)))∫  (du/( (√2)((1/2)(u^2  +1))))−(1/(2(√2)))∫ (dv/( (√2)(1/2)(v^2  +1)))  =(1/2)∫  (du/(u^2  +1))−(1/2)∫ (dv/(v^(2 ) +1)) =(1/2)arctan(u)−(1/2)arctanv +C  =(1/2)arctan((√2)x−1)−(1/2)arctan((√2)x+1) +C
I=xdxx4+1letdecomposeF(x)=xx4+1F(x)=x(x2+1)22x2=x(x2+12x)(x2+1+2x)=ax+bx22x+1+mx+nx2+2x+1wesee[thatF(x)=122(1x22x+11x2+2x+1)F(x)dx=122dxx2222x+12+12122dxx2+222x+12+12=122dx(x12)2+12(x12=u2)122dx(x+12)2+12(x+12=v2)=122du2(12(u2+1))122dv212(v2+1)=12duu2+112dvv2+1=12arctan(u)12arctanv+C=12arctan(2x1)12arctan(2x+1)+C
Commented by naka3546 last updated on 24/Jan/21
thanks, sir .    How  about  ∫  (x/(x^4 +3)) dx  ?
thanks,sir.Howaboutxx4+3dx?
Commented by Ar Brandon last updated on 24/Jan/21
∫(x/(x^4 +3))dx=(1/2)∫(du/(u^2 +3))=((tan^(−1) (x^2 /(√3)))/(2(√3)))+C
xx4+3dx=12duu2+3=tan1(x2/3)23+C
Commented by mathmax by abdo last updated on 24/Jan/21
∫  ((xdx)/(x^4  +3)) =∫  ((xdx)/(3((x^4 /3)+1))) =∫  ((xdx)/(3(((x/( (^4 (√3)))))^4 +1)))  =_((x/((^4 (√3))))=t)      (1/3)∫  (((^4 (√3))t)/(1+t^4 ))(^4 (√3))dt =(3^(2/4) /3) ∫  ((tdt)/(1+t^4 )) =....
xdxx4+3=xdx3(x43+1)=xdx3((x(43))4+1)=x(43)=t13(43)t1+t4(43)dt=3243tdt1+t4=.
Commented by mathmax by abdo last updated on 26/Jan/21
you are welcome
youarewelcome
Answered by Ar Brandon last updated on 24/Jan/21
I=∫(x/(x^4 +1))dx , x^2 =u     =(1/2)∫(du/(u^2 +1))=((tan^(−1) (u))/2)+C     =((tan^(−1) (x^2 ))/2)+C
I=xx4+1dx,x2=u=12duu2+1=tan1(u)2+C=tan1(x2)2+C
Answered by mnjuly1970 last updated on 24/Jan/21
x^2 =u  xdx=(du/2)  φ=∫(du/(2(u^2 +1)))=(1/2) tan^(−1) (x^2 )+C...
x2=uxdx=du2ϕ=du2(u2+1)=12tan1(x2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *