Menu Close

x-x-4-find-x-




Question Number 56214 by necx1 last updated on 12/Mar/19
x^x =4    find x
xx=4findx
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Mar/19
x=2 only one solution...
x=2onlyonesolution
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Mar/19
Commented by necx1 last updated on 12/Mar/19
solution please sir
solutionpleasesir
Commented by necx1 last updated on 12/Mar/19
thanks.....Any analytical approach
thanks..Anyanalyticalapproach
Answered by mr W last updated on 13/Mar/19
general:  x^x =a  with a≥(1/( (e)^(1/e) ))≈0.6922  ⇒x=a^(1/x) =e^((ln a)/x)   ⇒(1/x)e^((ln a)/x) =1  ⇒((ln a)/x)e^((ln a)/x) =ln a  ⇒((ln a)/x)=W(ln a)   ←  Lambert function  ⇒x=((ln a)/(W(ln a)))  if a=4:  x=((ln 4)/(W(ln 4)))=((ln 4)/(0.6931))=2  if a=5:  x=((ln 5)/(W(ln 5)))=((ln 5)/(0.7558))=2.1294
general:xx=awitha1ee0.6922x=a1x=elnax1xelnax=1lnaxelnax=lnalnax=W(lna)Lambertfunctionx=lnaW(lna)ifa=4:x=ln4W(ln4)=ln40.6931=2ifa=5:x=ln5W(ln5)=ln50.7558=2.1294
Answered by MJS last updated on 12/Mar/19
x^x =4  xln x =2ln 2  so x=2 is obvious  but is there another solution?  x<0  x^x =(−x)^x (cos πx +isin πx)  ⇒ sin πx =0 ∧ (−x)^x cos πx =4        sin πx =0 ⇒ x∈Z        [(−x)^x cos πx ∣ x={−1, −2, −3, −4, ...}]=             ={−1, (1/4), −(1/(27)), (1/(256)), ...}  ⇒ no solution for x<0  x=0  0^0  is not defined but  lim_(x→0^+ ) x^x =1  ⇒ no solution for x=0  0<x<1  x^x  has its minimum at x=(1/e) and is decreasing       in ]0; (1/e)[ and increasing in ](1/e); 1[  ⇒ no solution for 0<x<1  x≥1  x^x  is increasing ⇒ no other solution than       x=2
xx=4xlnx=2ln2sox=2isobviousbutisthereanothersolution?x<0xx=(x)x(cosπx+isinπx)sinπx=0(x)xcosπx=4sinπx=0xZ[(x)xcosπxx={1,2,3,4,}]=={1,14,127,1256,}nosolutionforx<0x=000isnotdefinedbutlimx0+xx=1nosolutionforx=00<x<1xxhasitsminimumatx=1eandisdecreasingin]0;1e[andincreasingin]1e;1[nosolutionfor0<x<1x1xxisincreasingnoothersolutionthanx=2

Leave a Reply

Your email address will not be published. Required fields are marked *