Menu Close

x-x-4a-x-x-4a-a-0-find-x-in-terms-of-a-




Question Number 183989 by HeferH last updated on 01/Jan/23
(((√x) + (√(x − 4a)))/( (√x) − (√(x − 4a)))) = a ≠ 0   find “x” in terms of “a”.
x+x4axx4a=a0findxintermsofa.
Commented by Frix last updated on 01/Jan/23
I get x=(a+1)^2
Igetx=(a+1)2
Answered by Rasheed.Sindhi last updated on 01/Jan/23
(((√x) + (√(x − 4a)))/( (√x) − (√(x − 4a)))) = a ≠ 0   find “x” in terms of “a”.   (((√x) +(√(x−4a)) )/( (√x) −(√(x−4a)) ))+1=a+1  ((2(√x))/( (√x) −(√(x−4a)) ))=a+1  2(√x) =a(√x) −a(√(x−4a)) +(√x) −(√(x−4a))   a(√x) −(√x) =a(√(x−4a)) +(√(x−4a))   (√x) (a−1)=(√(x−4a)) (a+1)  (((√(x−4a)) )/( (√x)))=((a−1)/(a+1))  ((x−4a)/x)=(((a−1)/(a+1)))^2   1−((4a)/x)=((a^2 −2a+1)/(a^2 +2a+1))  −((4a)/x)=((a^2 −2a+1)/(a^2 +2a+1))−1=((−4a)/((a+1)^2 ))  (1/x)=(1/((a+1)^2 ))      [∵ a≠0]  x=(a+1)^2
x+x4axx4a=a0findxintermsofa.x+x4axx4a+1=a+12xxx4a=a+12x=axax4a+xx4aaxx=ax4a+x4ax(a1)=x4a(a+1)x4ax=a1a+1x4ax=(a1a+1)214ax=a22a+1a2+2a+14ax=a22a+1a2+2a+11=4a(a+1)21x=1(a+1)2[a0]x=(a+1)2
Answered by a.lgnaoui last updated on 01/Jan/23
((((√x) +(√(x−4a)) )^2 )/(4a))=a  2x−4a+2(√(x(x−4a))) =4a^2   (√(x(x−4a))) =2a^2 +2a−x  x(x−4a)=4a^4 +4a^2 +x^2 +8a^3 −4a^2 x−4ax  x^2 −4ax=x^2 −4ax(a+1)+4a^2 (a^2 +2a+1)  0=4a^2 (a+1)^2 −4a^2 x            x=(a+1)^2
(x+x4a)24a=a2x4a+2x(x4a)=4a2x(x4a)=2a2+2axx(x4a)=4a4+4a2+x2+8a34a2x4axx24ax=x24ax(a+1)+4a2(a2+2a+1)0=4a2(a+1)24a2xx=(a+1)2
Answered by manolex last updated on 01/Jan/23
m=(√x)  n=(√(x−4a))  ((m+n)/(m−n))=a  m^2 =x  n^2 =x−4a  m^2 −n^2 =4a  (m+n)(m−n)=4a  ((m+n)/(m−n))=a        m≠n  (m+n)^2 =4a^2   m+n=2a    ∨    m+n=−2a  m−n=2              m−n=−2  2m=2a+2          2m=−2(a+1)  m=a+1                   m=−(a+1)  (√x)=a+1                 (√x)=−(a+1)  x=(a+1)^2                 x=(a+1)^2   solucion    x=(a+1)^2   comprobacion  ((a+1+(√((a+1)^2 −4a)))/(a+1−(√((a+1)^2 −4a))))=((a+1+(a−1))/(a+1−(a−1)))=((2a)/2)=a   correcto
m=xn=x4am+nmn=am2=xn2=x4am2n2=4a(m+n)(mn)=4am+nmn=amn(m+n)2=4a2m+n=2am+n=2amn=2mn=22m=2a+22m=2(a+1)m=a+1m=(a+1)x=a+1x=(a+1)x=(a+1)2x=(a+1)2solucionx=(a+1)2comprobaciona+1+(a+1)24aa+1(a+1)24a=a+1+(a1)a+1(a1)=2a2=acorrecto
Answered by Rasheed.Sindhi last updated on 01/Jan/23
(((√x) + (√(x − 4a)))/( (√x) − (√(x − 4a)))) = a ≠ 0   find “x” in terms of “a”.   (√x) +(√(x−4a)) =a(√x) −a(√(x−4a))   a(√x) −(√x) =(√(x−4a)) +a(√(x−4a))  (√x) (a−1)=(√(x−4a)) (a+1)  (((√(x−4a)) )/( (√x)))=((a−1)/(a+1))  ((x−4a)/x)=((a^2 −2a+1)/(a^2 +2a+1))  ((x−4a)/x)−1=((a^2 −2a+1)/(a^2 +2a+1))−1  ((−4a)/x)=((−4a)/((a+1)^2 ))  (1/x)=(1/((a+1)^2 ))     [∵a≠0]  x=(a+1)^2
x+x4axx4a=a0findxintermsofa.x+x4a=axax4aaxx=x4a+ax4ax(a1)=x4a(a+1)x4ax=a1a+1x4ax=a22a+1a2+2a+1x4ax1=a22a+1a2+2a+114ax=4a(a+1)21x=1(a+1)2[a0]x=(a+1)2

Leave a Reply

Your email address will not be published. Required fields are marked *