Question Number 183989 by HeferH last updated on 01/Jan/23

Commented by Frix last updated on 01/Jan/23

Answered by Rasheed.Sindhi last updated on 01/Jan/23
![(((√x) + (√(x − 4a)))/( (√x) − (√(x − 4a)))) = a ≠ 0 find “x” in terms of “a”. (((√x) +(√(x−4a)) )/( (√x) −(√(x−4a)) ))+1=a+1 ((2(√x))/( (√x) −(√(x−4a)) ))=a+1 2(√x) =a(√x) −a(√(x−4a)) +(√x) −(√(x−4a)) a(√x) −(√x) =a(√(x−4a)) +(√(x−4a)) (√x) (a−1)=(√(x−4a)) (a+1) (((√(x−4a)) )/( (√x)))=((a−1)/(a+1)) ((x−4a)/x)=(((a−1)/(a+1)))^2 1−((4a)/x)=((a^2 −2a+1)/(a^2 +2a+1)) −((4a)/x)=((a^2 −2a+1)/(a^2 +2a+1))−1=((−4a)/((a+1)^2 )) (1/x)=(1/((a+1)^2 )) [∵ a≠0] x=(a+1)^2](https://www.tinkutara.com/question/Q184001.png)
Answered by a.lgnaoui last updated on 01/Jan/23

Answered by manolex last updated on 01/Jan/23

Answered by Rasheed.Sindhi last updated on 01/Jan/23
![(((√x) + (√(x − 4a)))/( (√x) − (√(x − 4a)))) = a ≠ 0 find “x” in terms of “a”. (√x) +(√(x−4a)) =a(√x) −a(√(x−4a)) a(√x) −(√x) =(√(x−4a)) +a(√(x−4a)) (√x) (a−1)=(√(x−4a)) (a+1) (((√(x−4a)) )/( (√x)))=((a−1)/(a+1)) ((x−4a)/x)=((a^2 −2a+1)/(a^2 +2a+1)) ((x−4a)/x)−1=((a^2 −2a+1)/(a^2 +2a+1))−1 ((−4a)/x)=((−4a)/((a+1)^2 )) (1/x)=(1/((a+1)^2 )) [∵a≠0] x=(a+1)^2](https://www.tinkutara.com/question/Q184000.png)