Menu Close

x-x-6-2-2-x-




Question Number 103686 by Jamshidbek2311 last updated on 16/Jul/20
x^x^6  =(√2)^(√2)  x=?
$${x}^{{x}^{\mathrm{6}} } =\sqrt{\mathrm{2}}\:^{\sqrt{\mathrm{2}}} \:{x}=? \\ $$
Answered by Dwaipayan Shikari last updated on 16/Jul/20
x^6 logx=(√2).(1/2)log2  6logxe^(6logx) =3(√2)log2  6logx=W_0 (3(√2)log2)  x=e^((W_0 (3(√2)log2))/6) =1.189....
$${x}^{\mathrm{6}} {logx}=\sqrt{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}}{log}\mathrm{2} \\ $$$$\mathrm{6}{logxe}^{\mathrm{6}{logx}} =\mathrm{3}\sqrt{\mathrm{2}}{log}\mathrm{2} \\ $$$$\mathrm{6}{logx}={W}_{\mathrm{0}} \left(\mathrm{3}\sqrt{\mathrm{2}}{log}\mathrm{2}\right) \\ $$$${x}={e}^{\frac{{W}_{\mathrm{0}} \left(\mathrm{3}\sqrt{\mathrm{2}}{log}\mathrm{2}\right)}{\mathrm{6}}} =\mathrm{1}.\mathrm{189}…. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *