Menu Close

x-x-64-x-




Question Number 148395 by mathdanisur last updated on 27/Jul/21
x^x  = 64  ⇒ x = ?
$$\boldsymbol{{x}}^{\boldsymbol{{x}}} \:=\:\mathrm{64} \\ $$$$\Rightarrow\:\boldsymbol{{x}}\:=\:? \\ $$
Answered by Math_Freak last updated on 27/Jul/21
if x>0  xlnx = ln64  xlnx = ln2^6   xlnx = 6ln2  (e^(lnx) )•lnx = 6ln2  introducing lambert function  lnx = W(6ln2)  x = e^(W(6ln2))  ≈ 3.39121540052283312    if x<0  let x = −u  xlnx = 6ln2  −uln∣−u∣ = 6ln2  −ulnu = 6ln2  ulnu = −6ln2  (e^(lnu) )•lnu = −6ln2  introducing product log  lnu = W(−6ln2)  u = e^(W(−6ln2))   x = −u  x = −e^(W(−6ln2))  ≈ 0.7007 − 1.9045 i
$${if}\:{x}>\mathrm{0} \\ $$$${xlnx}\:=\:{ln}\mathrm{64} \\ $$$${xlnx}\:=\:{ln}\mathrm{2}^{\mathrm{6}} \\ $$$${xlnx}\:=\:\mathrm{6}{ln}\mathrm{2} \\ $$$$\left({e}^{{lnx}} \right)\bullet{lnx}\:=\:\mathrm{6}{ln}\mathrm{2} \\ $$$${introducing}\:{lambert}\:{function} \\ $$$${lnx}\:=\:{W}\left(\mathrm{6}{ln}\mathrm{2}\right) \\ $$$${x}\:=\:{e}^{{W}\left(\mathrm{6}{ln}\mathrm{2}\right)} \:\approx\:\mathrm{3}.\mathrm{39121540052283312} \\ $$$$ \\ $$$${if}\:{x}<\mathrm{0} \\ $$$${let}\:{x}\:=\:−{u} \\ $$$${xlnx}\:=\:\mathrm{6}{ln}\mathrm{2} \\ $$$$−{uln}\mid−{u}\mid\:=\:\mathrm{6}{ln}\mathrm{2} \\ $$$$−{ulnu}\:=\:\mathrm{6}{ln}\mathrm{2} \\ $$$${ulnu}\:=\:−\mathrm{6}{ln}\mathrm{2} \\ $$$$\left({e}^{{lnu}} \right)\bullet{lnu}\:=\:−\mathrm{6}{ln}\mathrm{2} \\ $$$${introducing}\:{product}\:{log} \\ $$$${lnu}\:=\:{W}\left(−\mathrm{6}{ln}\mathrm{2}\right) \\ $$$${u}\:=\:{e}^{{W}\left(−\mathrm{6}{ln}\mathrm{2}\right)} \\ $$$${x}\:=\:−{u} \\ $$$${x}\:=\:−{e}^{{W}\left(−\mathrm{6}{ln}\mathrm{2}\right)} \:\approx\:\mathrm{0}.\mathrm{7007}\:−\:\mathrm{1}.\mathrm{9045}\:{i} \\ $$
Commented by Tawa11 last updated on 27/Jul/21
Sir, please how can we get the complex number from      − e^(W(− 6 ln2)) .  How can I compute it. Thanks sir.
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{how}\:\mathrm{can}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{from}\:\:\:\:\:\:−\:\mathrm{e}^{\mathrm{W}\left(−\:\mathrm{6}\:\mathrm{ln2}\right)} . \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{compute}\:\mathrm{it}.\:\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by Math_Freak last updated on 27/Jul/21
Use wolfram Alpha  search for wolfram Alpha on the  web    to compute W(2ln2)  type productlog(2ln2)
$${Use}\:{wolfram}\:{Alpha} \\ $$$${search}\:{for}\:{wolfram}\:{Alpha}\:{on}\:{the} \\ $$$${web} \\ $$$$ \\ $$$${to}\:{compute}\:{W}\left(\mathrm{2}{ln}\mathrm{2}\right) \\ $$$${type}\:{productlog}\left(\mathrm{2}{ln}\mathrm{2}\right) \\ $$
Commented by mathdanisur last updated on 27/Jul/21
Thankyou Sir cool
$${Thankyou}\:{Sir}\:{cool} \\ $$
Commented by mathdanisur last updated on 27/Jul/21
Answer Sir.?
$${Answer}\:{Sir}.? \\ $$
Commented by mr W last updated on 27/Jul/21
(0.7007 − 1.9045 i)^((0.7007 − 1.9045 i)) ≠64
$$\left(\mathrm{0}.\mathrm{7007}\:−\:\mathrm{1}.\mathrm{9045}\:{i}\right)^{\left(\mathrm{0}.\mathrm{7007}\:−\:\mathrm{1}.\mathrm{9045}\:{i}\right)} \neq\mathrm{64} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *