Menu Close

x-x-dx-




Question Number 62906 by Prithwish sen last updated on 26/Jun/19
∫x^x dx
$$\int\mathrm{x}^{\mathrm{x}} \mathrm{dx} \\ $$
Commented by mathmax by abdo last updated on 27/Jun/19
let A =∫ x^x  dx ⇒A =∫ e^(xln(x)) dx =∫ Σ_(n=0) ^∞  ((x^n (ln(x))^n )/(n!)) dx  =Σ_(n=0) ^∞  (1/(n!)) ∫ x^n (ln(x))^n  dx =Σ_(n=0) ^∞   (W_(n,n) /(n!))   with W_(n,p) =∫ x^n (lnx)^p  dx  by psrts W_(n,p) =(1/(n+1))x^(n+1) (ln(x))^p  −∫ (1/(n+1))x^(n+1)  (p/x) (ln(x))^(p−1) dx  =(1/(n+1)) x^(n+1) (ln(x))^p  −(p/(n+1)) ∫ x^n  (lnx)^(p−1)  dx =(1/(n+1))x^(n+1) (lnx)^p −(p/(n+1)) W_(n,p−1)   ⇒W_(n,n) =(1/(n+1))x^(n+1) (lnx)^n  −(n/(n+1))W_(n,n−1)  ⇒  A =Σ_(n=0) ^∞  (((lnx)^n )/(n+1))x^n  −Σ_(n=1) ^∞  (n/(n+1)) W_n     ...be continued....
$${let}\:{A}\:=\int\:{x}^{{x}} \:{dx}\:\Rightarrow{A}\:=\int\:{e}^{{xln}\left({x}\right)} {dx}\:=\int\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} \left({ln}\left({x}\right)\right)^{{n}} }{{n}!}\:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\int\:{x}^{{n}} \left({ln}\left({x}\right)\right)^{{n}} \:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{W}_{{n},{n}} }{{n}!}\:\:\:{with}\:{W}_{{n},{p}} =\int\:{x}^{{n}} \left({lnx}\right)^{{p}} \:{dx} \\ $$$${by}\:{psrts}\:{W}_{{n},{p}} =\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \left({ln}\left({x}\right)\right)^{{p}} \:−\int\:\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:\frac{{p}}{{x}}\:\left({ln}\left({x}\right)\right)^{{p}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}+\mathrm{1}} \left({ln}\left({x}\right)\right)^{{p}} \:−\frac{{p}}{{n}+\mathrm{1}}\:\int\:{x}^{{n}} \:\left({lnx}\right)^{{p}−\mathrm{1}} \:{dx}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \left({lnx}\right)^{{p}} −\frac{{p}}{{n}+\mathrm{1}}\:{W}_{{n},{p}−\mathrm{1}} \\ $$$$\Rightarrow{W}_{{n},{n}} =\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \left({lnx}\right)^{{n}} \:−\frac{{n}}{{n}+\mathrm{1}}{W}_{{n},{n}−\mathrm{1}} \:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left({lnx}\right)^{{n}} }{{n}+\mathrm{1}}{x}^{{n}} \:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}}{{n}+\mathrm{1}}\:{W}_{{n}} \:\:\:\:…{be}\:{continued}…. \\ $$
Commented by Prithwish sen last updated on 27/Jun/19
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 27/Jun/19
you are welcome sir.
$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *