Menu Close

x-x-dx-




Question Number 62906 by Prithwish sen last updated on 26/Jun/19
∫x^x dx
xxdx
Commented by mathmax by abdo last updated on 27/Jun/19
let A =∫ x^x  dx ⇒A =∫ e^(xln(x)) dx =∫ Σ_(n=0) ^∞  ((x^n (ln(x))^n )/(n!)) dx  =Σ_(n=0) ^∞  (1/(n!)) ∫ x^n (ln(x))^n  dx =Σ_(n=0) ^∞   (W_(n,n) /(n!))   with W_(n,p) =∫ x^n (lnx)^p  dx  by psrts W_(n,p) =(1/(n+1))x^(n+1) (ln(x))^p  −∫ (1/(n+1))x^(n+1)  (p/x) (ln(x))^(p−1) dx  =(1/(n+1)) x^(n+1) (ln(x))^p  −(p/(n+1)) ∫ x^n  (lnx)^(p−1)  dx =(1/(n+1))x^(n+1) (lnx)^p −(p/(n+1)) W_(n,p−1)   ⇒W_(n,n) =(1/(n+1))x^(n+1) (lnx)^n  −(n/(n+1))W_(n,n−1)  ⇒  A =Σ_(n=0) ^∞  (((lnx)^n )/(n+1))x^n  −Σ_(n=1) ^∞  (n/(n+1)) W_n     ...be continued....
letA=xxdxA=exln(x)dx=n=0xn(ln(x))nn!dx=n=01n!xn(ln(x))ndx=n=0Wn,nn!withWn,p=xn(lnx)pdxbypsrtsWn,p=1n+1xn+1(ln(x))p1n+1xn+1px(ln(x))p1dx=1n+1xn+1(ln(x))ppn+1xn(lnx)p1dx=1n+1xn+1(lnx)ppn+1Wn,p1Wn,n=1n+1xn+1(lnx)nnn+1Wn,n1A=n=0(lnx)nn+1xnn=1nn+1Wnbecontinued.
Commented by Prithwish sen last updated on 27/Jun/19
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 27/Jun/19
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *