Menu Close

x-x-lt-x-1-is-that-right-if-x-was-negative-




Question Number 85003 by M±th+et£s last updated on 18/Mar/20
x≤[x]<x+1  is that right if (x) was negative
x[x]<x+1isthatrightif(x)wasnegative
Commented by M±th+et£s last updated on 18/Mar/20
please help me
pleasehelpme
Commented by M±th+et£s last updated on 18/Mar/20
and this  [x]= { ((−x                 x∈z)),((−[x]−1        x∉z)) :}
andthis[x]={xxz[x]1xz
Commented by MJS last updated on 18/Mar/20
[π]=3  [−π]=−4  let x=i+f; i∈Z∧0≤f<1  [x]=[i+f]=i  x=π ⇒ i=3∧f=.141592...  x=−π ⇒ i=−4∧f=.858407...  that′s what I learned in school back in ≈1980
[π]=3[π]=4letx=i+f;iZ0f<1[x]=[i+f]=ix=πi=3f=.141592x=πi=4f=.858407thatswhatIlearnedinschoolbackin1980
Commented by M±th+et£s last updated on 18/Mar/20
thank you sir. but i want to now if the tow rules  that i post is right or no
thankyousir.butiwanttonowifthetowrulesthatipostisrightorno
Commented by MJS last updated on 18/Mar/20
[x]= { ((−x                 x∈z)),((−[x]−1        x∉z)) :} makes no sense. you  cannot define a function using the function
[x]={xxz[x]1xzmakesnosense.youcannotdefineafunctionusingthefunction
Commented by M±th+et£s last updated on 18/Mar/20
sorry sir thereis a typo i mean [−x]
sorrysirthereisatypoimean[x]
Commented by MJS last updated on 18/Mar/20
[−x]= { ((−x; x∈Z)),((−[x]−1; x∉Z)) :}  ⇒ [−3]=−3; [−π]=−[π]−1=−3−1=−4  is true
[x]={x;xZ[x]1;xZ[3]=3;[π]=[π]1=31=4istrue
Answered by MJS last updated on 18/Mar/20
x≤[x]<x+1 is only true for x∈Z  3≤[3]<3+1 ⇔ 3≤3<4  −3≤[−3]<−3+1 ⇔ −3≤−3<−2    π≤[π]<π+1 ⇔ 3.14...≤3<4.14...  −π≤[−π]<−π+1 ⇔ −3.14...≤−4<−2.14...
x[x]<x+1isonlytrueforxZ3[3]<3+133<43[3]<3+133<2π[π]<π+13.143<4.14π[π]<π+13.144<2.14
Commented by M±th+et£s last updated on 18/Mar/20
thank you so much sir mjs. i learn a lot  from you
thankyousomuchsirmjs.ilearnalotfromyou

Leave a Reply

Your email address will not be published. Required fields are marked *