Menu Close

x-x-x-dx-




Question Number 54797 by afachri last updated on 11/Feb/19
       ∫  (√( x + (√( x + (√(x + (√( .....))))))))  dx  =   ?
$$ \\ $$$$ \\ $$$$\:\:\:\int\:\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\:\boldsymbol{{x}}\:+\:\sqrt{\boldsymbol{{x}}\:+\:\sqrt{\:…..}}}}\:\:\boldsymbol{{dx}}\:\:=\:\:\:? \\ $$$$ \\ $$
Answered by Smail last updated on 11/Feb/19
y=(√(x+(√(x+(√(x+(√(x+(√(x...))))))))))  y^2 =x+y⇔(y−(1/2))^2 =x+(1/4)  y=((1+(√(4x+1)))/2)  I=(1/2)∫((√(4x+1))+1)dx=(1/2)((1/6)(√((4x+1)^3 ))+x)+C
$${y}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}…}}}}} \\ $$$${y}^{\mathrm{2}} ={x}+{y}\Leftrightarrow\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ={x}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${y}=\frac{\mathrm{1}+\sqrt{\mathrm{4}{x}+\mathrm{1}}}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\sqrt{\mathrm{4}{x}+\mathrm{1}}+\mathrm{1}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{6}}\sqrt{\left(\mathrm{4}{x}+\mathrm{1}\right)^{\mathrm{3}} }+{x}\right)+{C} \\ $$$$ \\ $$
Commented by afachri last updated on 11/Feb/19
well done Sir. thank you
$$\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{done}}\:\boldsymbol{\mathrm{Sir}}.\:\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{you}} \\ $$
Commented by Smail last updated on 11/Feb/19
You are welcome
$${You}\:{are}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *