Question Number 175554 by Linton last updated on 02/Sep/22
$${x}^{\sqrt{{x}}} =\sqrt{{x}^{{x}} } \\ $$$${find}\:{x} \\ $$
Answered by mr W last updated on 02/Sep/22
$${x}=\mathrm{0} \\ $$$${x}^{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{{x}}{\mathrm{2}}} =\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{1} \\ $$$$\Rightarrow{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{{x}}{\mathrm{2}}=\mathrm{0}\:\Rightarrow{x}=\mathrm{4} \\ $$
Commented by BaliramKumar last updated on 02/Sep/22
$${x}\:=\:\mathrm{0}\:\mathrm{undefiend} \\ $$
Commented by mr W last updated on 02/Sep/22
$${undefined}\:{for}\:{you},\:{but}\:{not}\:{for}\:{all}! \\ $$
Commented by mr W last updated on 02/Sep/22
Commented by BaliramKumar last updated on 02/Sep/22
$${you}\:{are}\:{right}\:{sir} \\ $$$$\mathrm{3}\:{solution}\:{valid} \\ $$
Commented by BaliramKumar last updated on 02/Sep/22
$$ \\ $$$${x}^{\sqrt{{x}}} \:=\:\sqrt{{x}^{{x}} } \\ $$$${x}^{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} } \:=\:{x}^{\frac{{x}}{\mathrm{2}}} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{2}}} {log}\left({x}\right)\:=\:\frac{{x}}{\mathrm{2}}{log}\left({x}\right) \\ $$$${log}\left({x}\right)\left\{\sqrt{{x}}\:−\frac{{x}}{\mathrm{2}}\right\}\:=\:\mathrm{0} \\ $$$${log}\left({x}\right)\left\{\mathrm{2}\sqrt{{x}}−{x}\right\}\:=\:\mathrm{0} \\ $$$${log}\left({x}\right)\left\{\mathrm{2}−\sqrt{{x}}\right\}\sqrt{{x}}\:=\:\mathrm{0} \\ $$$$\mathrm{log}_{\mathrm{e}} \left(\mathrm{x}\right)\:=\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{2}−\sqrt{\mathrm{x}}\:=\:\mathrm{0}\:\:\:\:\:\:\:\:\sqrt{\mathrm{x}}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:=\:\mathrm{e}^{\mathrm{0}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{x}}\:=\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:=\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:=\:\mathrm{0} \\ $$
Commented by BaliramKumar last updated on 02/Sep/22
Answered by Rasheed.Sindhi last updated on 02/Sep/22
$${x}^{\sqrt{{x}}} =\sqrt{{x}^{{x}} } \\ $$$${x}^{{x}^{\mathrm{1}/\mathrm{2}} } ={x}^{{x}/\mathrm{2}} \\ $$$${x}^{\mathrm{1}/\mathrm{2}} ={x}/\mathrm{2} \\ $$$${x}^{\mathrm{1}/\mathrm{2}−\mathrm{1}} =\mathrm{1}/\mathrm{2} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{1}/\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}^{\mathrm{1}/\mathrm{2}} =\mathrm{2} \\ $$$${x}=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$