Menu Close

x-x-x-x-m-x-x-x-m-is-a-real-parameter-




Question Number 98761 by bemath last updated on 16/Jun/20
(√(x+(√x) )) −(√(x−(√x))) = m(√(x/(x+(√x))))  m is a real parameter
x+xxx=mxx+xmisarealparameter
Commented by MJS last updated on 16/Jun/20
if x∈R  ⇒ x>0∧x−(√x)≥0 ⇒ x≥1  (√(x+(√x)))−(√(x−(√x)))=m(√(x/(x+(√x))))  (√((1+(√x))(√x)))−(√((−1+(√x))(√x)))=m(√((√x)/(1+(√x))))  x≥1 ⇒ we are allowed to divide by (√x)  (√(1+(√x)))−(√(−1+(√x)))=(m/( (√(1+(√x)))))  1+(√x)−(√(−1+(√x)))×(√(1+(√x)))=m  −1+(√x)≥0∧1+(√x)≥0  1+(√x)−(√(x−1))=m  ⇒ 1<m≤2  (√x)−(√(x−1))=m−1  squaring (both sides >0)  2x−1−2(√(x(x−1)))=(m−1)^2   2(√(x(x−1)))=2x−1−(m−1)^2        to prove: 2x−1−(m−1)^2 ≥0       2x−1≥(m−1)^2        x≥1 ⇒ 2x−1≥1       (√(2x−1))≥m−1       (√(2x−1))+1≥m       (√(2x−1))+1≥2∧m≤2 ⇒ true  squaring (both sides >0)  4x(x−1)=(2x−1−(m−1)^2 )^2   4(m−1)^2 x=(m^2 −2m+2)^2   x=(((m^2 −2m+2)^2 )/(4(m−1)^2 ))∧1<m≤2
ifxRx>0xx0x1x+xxx=mxx+x(1+x)x(1+x)x=mx1+xx1weareallowedtodividebyx1+x1+x=m1+x1+x1+x×1+x=m1+x01+x01+xx1=m1<m2xx1=m1squaring(bothsides>0)2x12x(x1)=(m1)22x(x1)=2x1(m1)2toprove:2x1(m1)202x1(m1)2x12x112x1m12x1+1m2x1+12m2truesquaring(bothsides>0)4x(x1)=(2x1(m1)2)24(m1)2x=(m22m+2)2x=(m22m+2)24(m1)21<m2
Commented by john santu last updated on 16/Jun/20
(√(x+(√x))) {(√(x+(√x)))−(√(x−(√x)))} = m(√x)  x+(√x)−(√(x^2 −x)) = m(√x)   x+(1−m)(√x) = (√(x^2 −x))  squaring   x^2 +2x(√x)(1−m)+(1−m)^2 x=x^2 −x  2x(√x)(1−m)+(1−m)^2 x+x=0  x { 2(√x) (1−m)+2−2m+m^2  } =0  2(√x) = ((m^2 −2m+2)/(m−1)) ⇒(√x) = ((m^2 −2m+2)/(2m−2))  x = (((m^2 −2m+2)/(2m−2)))^2
x+x{x+xxx}=mxx+xx2x=mxx+(1m)x=x2xsquaringx2+2xx(1m)+(1m)2x=x2x2xx(1m)+(1m)2x+x=0x{2x(1m)+22m+m2}=02x=m22m+2m1x=m22m+22m2x=(m22m+22m2)2
Commented by MJS last updated on 16/Jun/20
your answer is only true for m=2
youranswerisonlytrueform=2
Commented by john santu last updated on 16/Jun/20
typo sir. your answer and my answer   is same
typosir.youranswerandmyanswerissame
Commented by MJS last updated on 16/Jun/20
I see. but we need to restrict m like I showed
Isee.butweneedtorestrictmlikeIshowed

Leave a Reply

Your email address will not be published. Required fields are marked *