Menu Close

x-x-x-x-x-dx-




Question Number 102894 by bramlex last updated on 11/Jul/20
∫ (√(x+(√(x+(√(x+(√(x+(√(x+...)))))))))) dx
$$\int\:\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+…}}}}}\:\mathrm{dx}\: \\ $$
Answered by bemath last updated on 11/Jul/20
y=(√(x+(√(x+(√(x+(√(x+(√(...))))))))))   y^2  = x+y ⇒y^2 −y−x = 0  y = ((1 + (√(1+4x)))/2)  I=∫ (((1+(√(1+4x)))/2)) dx   I = (x/2) +(1/2)∫ (1+4x)^(1/2)  dx   I= (x/2)+ (1/2). (2/3).(1/4)(√((1+4x)^3 )) + C   I= (x/2) + (1/(12)) (√((1+4x)^3 )) + C
$${y}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{…}}}}}\: \\ $$$${y}^{\mathrm{2}} \:=\:{x}+{y}\:\Rightarrow{y}^{\mathrm{2}} −{y}−{x}\:=\:\mathrm{0} \\ $$$${y}\:=\:\frac{\mathrm{1}\:+\:\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}} \\ $$$${I}=\int\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\right)\:{dx}\: \\ $$$${I}\:=\:\frac{{x}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\int\:\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{1}/\mathrm{2}} \:{dx}\: \\ $$$${I}=\:\frac{{x}}{\mathrm{2}}+\:\frac{\mathrm{1}}{\mathrm{2}}.\:\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\:+\:{C}\: \\ $$$${I}=\:\frac{{x}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{12}}\:\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\:+\:{C}\: \\ $$
Answered by Dwaipayan Shikari last updated on 11/Jul/20
(√(x+(√(x+(√(x..))))))=y  x+y=y^2   y^2 −y−x=0  y=((1+(√(1+4x)))/2)  ∫((1+(√(1+4x)))/2)=(x/2)+(1/8)∫4(√(1+4x))dx=(x/2)+(1/4)∫u^2 du  (take (√(1+4x))=u  =(x/2)+(1/(12))u^3 +C=(x/2)+(1/(12))(1+4x)^(3/2) +Constant  If it is  ∫(√(x(√(x(√(x(√(x(√(x....∞))))))))))dx=∫y=∫xdx=(x^2 /2)+C  y^2 =xy  y^2 −xy=0  y=0  or y=x
$$\sqrt{{x}+\sqrt{{x}+\sqrt{{x}..}}}={y} \\ $$$${x}+{y}={y}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −{y}−{x}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}} \\ $$$$\int\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}\int\mathrm{4}\sqrt{\mathrm{1}+\mathrm{4}{x}}{dx}=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\int{u}^{\mathrm{2}} {du}\:\:\left({take}\:\sqrt{\mathrm{1}+\mathrm{4}{x}}={u}\right. \\ $$$$=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{12}}{u}^{\mathrm{3}} +{C}=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{12}}\left(\mathrm{1}+\mathrm{4}{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +{Constant} \\ $$$${If}\:{it}\:{is} \\ $$$$\int\sqrt{{x}\sqrt{{x}\sqrt{{x}\sqrt{{x}\sqrt{{x}….\infty}}}}}{dx}=\int{y}=\int{xdx}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{C} \\ $$$${y}^{\mathrm{2}} ={xy} \\ $$$${y}^{\mathrm{2}} −{xy}=\mathrm{0}\:\:{y}=\mathrm{0}\:\:{or}\:{y}={x} \\ $$$$ \\ $$
Answered by Aziztisffola last updated on 11/Jul/20

Leave a Reply

Your email address will not be published. Required fields are marked *