Question Number 191527 by MATHEMATICSAM last updated on 25/Apr/23
$${x}\:+\:{y}\:=\:\mathrm{1}\:\mathrm{and}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{x}^{\mathrm{11}} \:+\:{y}^{\mathrm{11}} . \\ $$
Answered by Rasheed.Sindhi last updated on 25/Apr/23
$$\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{1}\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}+\mathrm{2}{xy}=\mathrm{1}\Rightarrow{xy}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({x}+{y}\right)^{\mathrm{3}} =\mathrm{1}\Rightarrow{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{3}{xy}\left({x}+{y}\right)=\mathrm{1} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\bullet{x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right)=\left(\mathrm{2}\right)\left(\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{x}^{\mathrm{5}} +{y}^{\mathrm{5}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} \left({x}+{y}\right)=\mathrm{5} \\ $$$$\Rightarrow{x}^{\mathrm{5}} +{y}^{\mathrm{5}} +\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{1}\right)=\mathrm{5} \\ $$$$\:\:\:\:{x}^{\mathrm{5}} +{y}^{\mathrm{5}} =\mathrm{5}−\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{19}}{\mathrm{4}} \\ $$$$\begin{array}{|c|}{{x}^{\mathrm{5}} +{y}^{\mathrm{5}} =\frac{\mathrm{19}}{\mathrm{4}}}\\\hline\end{array}…….\left({i}\right) \\ $$$$\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right)^{\mathrm{2}} =\frac{\mathrm{25}}{\mathrm{4}}\Rightarrow{x}^{\mathrm{6}} +{y}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{3}} {y}^{\mathrm{3}} =\frac{\mathrm{25}}{\mathrm{4}} \\ $$$$\bullet{x}^{\mathrm{6}} +{y}^{\mathrm{6}} +\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{25}}{\mathrm{4}}\Rightarrow{x}^{\mathrm{6}} +{y}^{\mathrm{6}} =\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\begin{array}{|c|}{{x}^{\mathrm{6}} +{y}^{\mathrm{6}} =\frac{\mathrm{13}}{\mathrm{2}}}\\\hline\end{array}……..\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} +{x}^{\mathrm{5}} {y}^{\mathrm{5}} \left({x}+{y}\right)=\left(\frac{\mathrm{19}}{\mathrm{4}}\right)\left(\frac{\mathrm{13}}{\mathrm{2}}\right)=\frac{\mathrm{247}}{\mathrm{8}} \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} +\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{5}} \left(\mathrm{1}\right)=\left(\frac{\mathrm{19}}{\mathrm{4}}\right)\left(\frac{\mathrm{13}}{\mathrm{2}}\right)=\frac{\mathrm{247}}{\mathrm{8}} \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} =\frac{\mathrm{247}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{32}}=\frac{\mathrm{989}}{\mathrm{32}} \\ $$$$\begin{array}{|c|}{{x}^{\mathrm{11}} +{y}^{\mathrm{11}} =\frac{\mathrm{989}}{\mathrm{32}}}\\\hline\end{array} \\ $$
Answered by mr W last updated on 25/Apr/23
$$\boldsymbol{{Method}}\:\boldsymbol{{II}} \\ $$$${p}={e}_{\mathrm{1}} =\mathrm{1} \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −\mathrm{2}{e}_{\mathrm{2}} \:\Rightarrow\mathrm{2}=\mathrm{1}−\mathrm{2}{e}_{\mathrm{2}} \:\Rightarrow{e}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${p}_{{n}} ={e}_{\mathrm{1}} {p}_{{n}−\mathrm{1}} −{e}_{\mathrm{2}} {p}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{p}_{{n}} −{p}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}{p}_{{n}−\mathrm{1}} =\mathrm{0} \\ $$$${r}^{\mathrm{2}} −{r}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${r}=\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow{p}_{{n}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{n}} \\ $$$${examples}: \\ $$$${p}_{\mathrm{5}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{5}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{5}} =\frac{\mathrm{19}}{\mathrm{4}} \\ $$$${p}_{\mathrm{6}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{6}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{6}} =\frac{\mathrm{13}}{\mathrm{2}} \\ $$$${p}_{\mathrm{11}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{11}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{11}} =\frac{\mathrm{989}}{\mathrm{32}}\:\checkmark \\ $$$${p}_{\mathrm{15}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{15}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{15}} =\frac{\mathrm{13775}}{\mathrm{128}} \\ $$$${p}_{\mathrm{20}} =\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{20}} +\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{20}} =\frac{\mathrm{261575}}{\mathrm{512}} \\ $$