Question Number 61565 by naka3546 last updated on 04/Jun/19
$${x}\left({y}+\mathrm{1}\right)\:+\:{y}\left({x}−\mathrm{1}\right)\:\:=\:\:\mathrm{12} \\ $$$${x}\sqrt{{y}}\:\:+\:\:{y}\sqrt{{x}}\:\:\:\:=\:\:\mathrm{21} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{R} \\ $$$${x}\:+\:{y}\:\:=\:\:? \\ $$
Commented by MJS last updated on 05/Jun/19
$$\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{source}\:\mathrm{of}\:\mathrm{this}\:\mathrm{question}? \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{got}\:\mathrm{no}\:\mathrm{exact}\:\mathrm{solution}… \\ $$
Commented by naka3546 last updated on 05/Jun/19
$${I}\:{don}'{t}\:{know},\:{sir}.\: \\ $$$$\frac{\mathrm{12}}{{xy}}\:\:=\:\:\frac{\mathrm{21}}{\:\sqrt{{xy}}}\:−\:\mathrm{2}\:\sqrt{{xy}}\:\:\: \\ $$$${x}\:+\:{y}\:\:=\:\:? \\ $$
Commented by MJS last updated on 05/Jun/19
$$\mathrm{this}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{equation}\:\mathrm{in}\:\mathrm{2}\:\mathrm{variables}\:\mathrm{but} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{you}\:\mathrm{can}\:\mathrm{get}\:\mathrm{it}\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{two}… \\ $$$$\sqrt{{xy}}={t}\:\left[{t}\geqslant\mathrm{0}\right] \\ $$$$\frac{\mathrm{12}}{{t}^{\mathrm{2}} }=\frac{\mathrm{21}}{{t}}−\mathrm{2}{t} \\ $$$${t}^{\mathrm{3}} −\frac{\mathrm{21}}{\mathrm{2}}{t}+\mathrm{6}=\mathrm{0} \\ $$$${t}_{\mathrm{0}} =\sqrt{\mathrm{14}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{6}\sqrt{\mathrm{14}}}{\mathrm{49}}\right)\:\approx.\mathrm{591098} \\ $$$${t}_{\mathrm{1}} =\sqrt{\mathrm{14}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{6}\sqrt{\mathrm{14}}}{\mathrm{49}}\right)\:\approx\mathrm{2}.\mathrm{90413} \\ $$$${t}_{\mathrm{2}} =−\sqrt{\mathrm{14}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{6}\sqrt{\mathrm{14}}}{\mathrm{49}}\right)\:\approx−\mathrm{3}.\mathrm{49523}\:\left[\mathrm{not}\:\mathrm{valid}\right] \\ $$$$\Rightarrow\:{xy}=.\mathrm{349397}\:\vee\:{xy}=\mathrm{8}.\mathrm{43398} \\ $$
Answered by MJS last updated on 05/Jun/19
$${x}>\mathrm{0}\wedge{y}>\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}{xy}+{x}−{y}−\mathrm{12}=\mathrm{0}\:\Rightarrow\:{x}=\frac{{y}+\mathrm{12}}{\mathrm{2}{y}+\mathrm{1}} \\ $$$$\mathrm{let}\:{x}={u}^{\mathrm{2}} \wedge{y}={v}^{\mathrm{2}} \wedge{u}>\mathrm{0}\wedge{v}>\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:{u}=\frac{\sqrt{{v}^{\mathrm{2}} +\mathrm{12}}}{\:\sqrt{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:\frac{{v}^{\mathrm{2}} \sqrt{{v}^{\mathrm{2}} +\mathrm{12}}}{\:\sqrt{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}}}+\frac{{v}\left({v}^{\mathrm{2}} +\mathrm{12}\right)}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}}=\mathrm{21} \\ $$$$\:\:\:\:\:\frac{{v}\left({v}^{\mathrm{2}} +\mathrm{12}\right)+{v}^{\mathrm{2}} \sqrt{\left({v}^{\mathrm{2}} +\mathrm{12}\right)\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}}=\mathrm{21} \\ $$$$\:\:\:\:\:{v}^{\mathrm{2}} \sqrt{\left({v}^{\mathrm{2}} +\mathrm{12}\right)\left(\mathrm{2}{v}^{\mathrm{2}} +\mathrm{1}\right)}=−{v}^{\mathrm{3}} +\mathrm{42}{v}^{\mathrm{2}} −\mathrm{12}{v}+\mathrm{21} \\ $$$$\:\:\:\:\:{v}^{\mathrm{4}} \left(\mathrm{2}{v}^{\mathrm{4}} +\mathrm{25}{v}^{\mathrm{2}} +\mathrm{12}\right)=\left({v}^{\mathrm{3}} −\mathrm{42}{v}^{\mathrm{2}} +\mathrm{12}{v}−\mathrm{21}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{v}^{\mathrm{8}} +\mathrm{12}{v}^{\mathrm{6}} +\mathrm{42}{v}^{\mathrm{5}} −\mathrm{888}{v}^{\mathrm{4}} +\mathrm{525}{v}^{\mathrm{3}} −\mathrm{954}{v}^{\mathrm{2}} +\mathrm{252}{v}−\frac{\mathrm{441}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{only}\:\mathrm{one}\:\mathrm{root}\:>\mathrm{0} \\ $$$${v}=\mathrm{4}.\mathrm{448447}… \\ $$$$\Rightarrow\:{y}=\mathrm{19}.\mathrm{78864}… \\ $$$$\Rightarrow\:{x}=.\mathrm{7834092}… \\ $$$${x}+{y}=\mathrm{20}.\mathrm{57209}… \\ $$
Answered by behi83417@gmail.com last updated on 05/Jun/19
$$\mathrm{x}=\mathrm{p}^{\mathrm{2}} ,\mathrm{y}=\mathrm{q}^{\mathrm{2}} \Rightarrow\begin{cases}{\mathrm{p}^{\mathrm{2}} −\mathrm{q}^{\mathrm{2}} +\mathrm{2p}^{\mathrm{2}} \mathrm{q}^{\mathrm{2}} =\mathrm{12}}\\{\mathrm{pq}\left(\mathrm{p}+\mathrm{q}\right)=\mathrm{21}}\end{cases} \\ $$$$\mathrm{p}+\mathrm{q}=\mathrm{s},\mathrm{pq}=\mathrm{t}\Rightarrow\begin{cases}{\mathrm{s}\sqrt{\mathrm{s}^{\mathrm{2}} −\mathrm{4t}}+\mathrm{2t}^{\mathrm{2}} =\mathrm{12}}\\{\mathrm{st}=\mathrm{21}}\end{cases} \\ $$$$\mathrm{s}^{\mathrm{2}} \left(\mathrm{s}^{\mathrm{2}} −\mathrm{4t}\right)=\mathrm{144}−\mathrm{48t}^{\mathrm{2}} +\mathrm{4t}^{\mathrm{4}} \\ $$$$\mathrm{s}^{\mathrm{4}} −\mathrm{84s}=\mathrm{144}−\mathrm{48}×\frac{\mathrm{441}}{\mathrm{s}^{\mathrm{2}} }+\mathrm{4}×\frac{\mathrm{194481}}{\mathrm{s}^{\mathrm{4}} } \\ $$$$\mathrm{s}^{\mathrm{8}} −\mathrm{84s}^{\mathrm{5}} −\mathrm{144s}^{\mathrm{4}} +\mathrm{21168s}^{\mathrm{2}} −\mathrm{777924}=\mathrm{0} \\ $$$$\mathrm{s}=−\mathrm{4}.\mathrm{631},\mathrm{5}.\mathrm{334}\Rightarrow\mathrm{t}=−.\mathrm{4}.\mathrm{535},\mathrm{3}.\mathrm{937} \\ $$$$\Rightarrow\begin{cases}{\mathrm{p}+\mathrm{q}=−\mathrm{4}.\mathrm{631}}\\{\mathrm{pq}=−\mathrm{4}.\mathrm{535}}\end{cases}\Rightarrow\mathrm{z}^{\mathrm{2}} −\mathrm{4}.\mathrm{631z}−\mathrm{4}.\mathrm{535}=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{\mathrm{p}=\mathrm{5}.\mathrm{461}\Rightarrow\mathrm{x}=\mathrm{29}.\mathrm{823}}\\{\mathrm{q}=−\mathrm{0}.\mathrm{83}\Rightarrow\mathrm{y}=\mathrm{0}.\mathrm{689}}\end{cases}\Rightarrow\mathrm{x}+\mathrm{y}=\mathrm{30}.\mathrm{512} \\ $$$$\Rightarrow\begin{cases}{\mathrm{p}+\mathrm{q}=\mathrm{5}.\mathrm{334}}\\{\mathrm{pq}=\mathrm{3}.\mathrm{937}\Rightarrow\mathrm{z}^{\mathrm{2}} +\mathrm{5}.\mathrm{334z}+\mathrm{3}.\mathrm{937}=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\mathrm{p}=−\mathrm{4}.\mathrm{46}\Rightarrow\mathrm{x}=\mathrm{19}.\mathrm{892}}\\{\mathrm{q}=−\mathrm{0}.\mathrm{884}\Rightarrow\mathrm{y}=\mathrm{0}.\mathrm{778}}\end{cases}\Rightarrow\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{20}.\mathrm{67} \\ $$