Question Number 169865 by mr W last updated on 11/May/22
$${x}+{y}=−\mathrm{2} \\ $$$${xy}=\mathrm{4} \\ $$$${find}\:{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} =? \\ $$
Commented by cortano1 last updated on 11/May/22
$$\:{y}=−{x}−\mathrm{2}\:\wedge\:{x}\left(−{x}−\mathrm{2}\right)=\mathrm{4} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}\:=\:\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{1}\pm\:{i}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{x}=\mathrm{2}\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\:\pm\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i}\right) \\ $$$$\Rightarrow{x}=−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\mp\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i}\right)=−\mathrm{2}{e}^{\pm\:{i}\frac{\pi}{\mathrm{3}}} \\ $$$$\Rightarrow{x}^{\mathrm{8}} \:=\:\mathrm{256}\:\left(\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{3}}+{i}\:\mathrm{sin}\:\frac{\mathrm{8}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{x}^{\mathrm{8}} \:=\:\mathrm{256}\:\left(\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:+\:{i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{x}^{\mathrm{8}} \:=\:\mathrm{256}\:\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}\:{i}\right)=−\mathrm{128}+\mathrm{128}\sqrt{\mathrm{3}}\:{i} \\ $$$$\Rightarrow{y}=−{x}−\mathrm{2}=\mathrm{1}\mp\:{i}\sqrt{\mathrm{3}}\:−\mathrm{2}=−\mathrm{1}\mp\:{i}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{y}=−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i}\right)=−\mathrm{2}{e}^{\pm{i}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\Rightarrow{y}^{\mathrm{5}} \:=\:−\mathrm{32}\left(\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{3}}\:\pm\:{i}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{y}^{\mathrm{5}} =−\mathrm{32}\left(−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mp\:{i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow{y}^{\mathrm{5}} =\:−\mathrm{32}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\mp\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i}\right)=−\mathrm{16}\:\pm\:\mathrm{16}\sqrt{\mathrm{3}}\:{i} \\ $$$$\Rightarrow\mathrm{8}{y}^{\mathrm{5}} \:=\:−\mathrm{128}\:\pm\mathrm{128}\sqrt{\mathrm{3}}\:{i}\: \\ $$$$\begin{cases}{{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} \:=\:−\mathrm{256}+\mathrm{256}\sqrt{\mathrm{3}}\:{i}}\\{{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} \:=\:−\mathrm{256}}\end{cases} \\ $$
Commented by infinityaction last updated on 13/May/22
$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}^{\mathrm{8}} \:+\:\mathrm{8}\left(\mathrm{2}{y}^{\mathrm{5}} \right)\:=\:\mathrm{2}{p}\left({let}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\underset{\boldsymbol{{A}}} {\underbrace{\left({x}^{\mathrm{8}} \:+\:{y}^{\mathrm{8}} \:+\:{x}^{\mathrm{8}} \:−\:{y}^{\mathrm{8}} \right)\:}}+\:\mathrm{8}\underset{\boldsymbol{{B}}} {\underbrace{\left({y}^{\mathrm{5}} \:+\:{x}^{\mathrm{5}} \:+\:{y}^{\mathrm{5}} −\:{x}^{\mathrm{5}} \right)}}\:\:=\:\:\mathrm{2}{p} \\ $$$$\:\:\:\:\mathrm{2}{p}\:\:=\:\:\:{A}\:+\:\mathrm{8}{B} \\ $$$$\:\:\:\boldsymbol{{A}}\:=\:\boldsymbol{{x}}^{\mathrm{8}} +\boldsymbol{{y}}^{\mathrm{8}\:} +\left(\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{y}}^{\mathrm{4}} \right)\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:{x}+{y}\:=\:\:−\mathrm{2}\:\:\:\:{and}\:\:\:\:\:{xy}\:\:=\:\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:\:=\:\mathrm{4}−\mathrm{2}{xy}\:=\:−\mathrm{4}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{4}\:} +\:{y}^{\mathrm{4}} \:\:=\:\:−\mathrm{16} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{8}} \:+\:{y}^{\mathrm{8}} \:=\:\:−\mathrm{256} \\ $$$$\:\:\:\:\:\:\:\:\:{A}\:\:=\:−\mathrm{256}\:−\mathrm{128}\left({x}−{y}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{B}\:=\:{y}^{\mathrm{5}} +{x}^{\mathrm{5}} \:+{y}^{\mathrm{5}} \:−{x}^{\mathrm{5}} \\ $$$$\boldsymbol{{B}}=\left(\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{y}}^{\mathrm{4}} \right)\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)−\boldsymbol{{xy}}^{\mathrm{4}} −\boldsymbol{{yx}}^{\mathrm{4}} +\left(\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{y}}^{\mathrm{4}} \right)\left(\boldsymbol{{y}}−\boldsymbol{{x}}\right)−\boldsymbol{{yx}}^{\mathrm{4}} +\boldsymbol{{xy}}^{\mathrm{4}} \\ $$$$\:\:\:\boldsymbol{{B}}=\:\mathrm{32}−\mathrm{4}\left(\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{y}}^{\mathrm{3}} \right)−\mathrm{16}\left(\boldsymbol{{y}}−\boldsymbol{{x}}\right)−\boldsymbol{{xy}}\left(\boldsymbol{{x}}^{\mathrm{3}} −\boldsymbol{{y}}^{\mathrm{3}} \right) \\ $$$$\boldsymbol{{B}}\:=\:\mathrm{32}−\mathrm{4}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{xy}}\right)+\mathrm{16}\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}\right)+\mathrm{4}\left(\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{x}}\right)\left(\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{xy}}\right) \\ $$$${B}=\:\mathrm{32}+\mathrm{4}\left(−\mathrm{2}\right)×\mathrm{8}+\mathrm{16}\left({x}−{y}\right)+\mathrm{4}\left({y}−{x}\right)\left(−\mathrm{4}+\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{B}}\:=\:−\mathrm{32}\:+\:\mathrm{16}\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right) \\ $$$$\:\:\:\mathrm{2}{p}\:=\:−\mathrm{256}−\mathrm{128}\left({x}−{y}\right)+\mathrm{8}\left\{−\mathrm{32}\:+\mathrm{16}\left({x}−{y}\right)\right\} \\ $$$$\:\:\:\mathrm{2}{p}\:=\:−\mathrm{256}−\mathrm{128}\left({x}−{y}\right)−\mathrm{256}+\mathrm{128}\left({x}−{y}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{p}\:=\:−\mathrm{512} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\:\:=\:\:−\mathrm{256} \\ $$
Answered by Rasheed.Sindhi last updated on 11/May/22
$$\left.\begin{matrix}{{x}+{y}=−\mathrm{2}}\\{{xy}=\mathrm{4}}\end{matrix}\right\}{x}=−\mathrm{1}\pm{i}\sqrt{\mathrm{3}} \\ $$$${x}\left(−{x}−\mathrm{2}\right)=\mathrm{4} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}=\mathrm{0},\left(\:{Similarly}\:{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{4}=\mathrm{0}\right) \\ $$$${x}^{\mathrm{2}} =−\mathrm{2}{x}−\mathrm{4}\:,\:\:\:\left({y}^{\mathrm{2}} =−\mathrm{2}{y}−\mathrm{4}\right) \\ $$$$\bullet{x}^{\mathrm{8}} =\left({x}^{\mathrm{2}} \right)^{\mathrm{4}} =\left(−\mathrm{2}{x}−\mathrm{4}\right)^{\mathrm{4}} =\mathrm{2}^{\mathrm{4}} \left({x}+\mathrm{2}\right)^{\mathrm{4}} \\ $$$$=\mathrm{16}\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{16}\left(−\mathrm{2}{x}−\mathrm{4}+\mathrm{4}{x}+\mathrm{4}\right)^{\mathrm{2}} = \\ $$$$=\mathrm{16}\left(\mathrm{2}{x}\right)^{\mathrm{2}} =\mathrm{64}\left(−\mathrm{2}{x}−\mathrm{4}\right)=−\mathrm{128}\left({x}+\mathrm{2}\right) \\ $$$$=−\mathrm{128}\left(−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}+\mathrm{2}\right)=−\mathrm{128}\left(\mathrm{1}\pm{i}\sqrt{\mathrm{3}}\:\right) \\ $$$$\bullet\mathrm{8}{y}^{\mathrm{5}} =\:\mathrm{8}\left({y}^{\mathrm{2}} \right)^{\mathrm{2}} {y}=\mathrm{8}{y}\left(−\mathrm{2}{y}−\mathrm{4}\right)^{\mathrm{2}} \\ $$$$\:\:=\mathrm{16}{y}\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{4}\right)=\mathrm{16}{y}\left(−\mathrm{2}{y}−\mathrm{4}+\mathrm{4}{y}+\mathrm{4}\right) \\ $$$$\:\:\:=\mathrm{16}{y}\left(\mathrm{2}{y}\right) \\ $$$$\:\:=\mathrm{32}{y}^{\mathrm{2}} =\mathrm{32}\left(−\mathrm{2}{y}−\mathrm{4}\right)=−\mathrm{64}\left({y}+\mathrm{2}\right) \\ $$$$\:\:=\mathrm{64}\left(−{x}−\mathrm{2}+\mathrm{2}\right)=−\mathrm{64}{x}=−\mathrm{64}\left(−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}\right) \\ $$$$\bullet{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} \\ $$$$\:\:\:\:\:\:=−\mathrm{128}\left(\mathrm{1}\pm{i}\sqrt{\mathrm{3}}\:\right)+−\mathrm{64}\left(−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:=−\mathrm{128}+\mathrm{64}\mp\mathrm{128}{i}\sqrt{\mathrm{3}}\:\mp\mathrm{64}{i}\sqrt{\mathrm{3}}\: \\ $$$$\:\:\:\:=−\mathrm{64}\mp\mathrm{192}{i}\sqrt{\mathrm{3}}\:?? \\ $$
Commented by greougoury555 last updated on 11/May/22
$$\mathrm{16}\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{16}\left(−\mathrm{6}{x}\right)^{\mathrm{2}} =\:\mathrm{16}×\mathrm{36}{x}^{\mathrm{2}} \\ $$
Commented by Rasheed.Sindhi last updated on 11/May/22
$$\mathcal{T}{hanks}\:{sir}\:{for}\:{pointing}\:{out}\:{my}\:{mistake}. \\ $$
Answered by Rasheed.Sindhi last updated on 13/May/22
$$\begin{cases}{{x}+{y}=−\mathrm{2}}\\{{xy}=\mathrm{4}}\end{cases}\:;{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} =? \\ $$$$\begin{cases}{{x}+{y}=−\mathrm{2}\Rightarrow{x}=−{y}−\mathrm{2}}\\{{xy}=\mathrm{4}\Rightarrow{y}\left(−{y}−\mathrm{2}\right)=\mathrm{4}={y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{4}=\mathrm{0}\Rightarrow{y}^{\mathrm{2}} =−\mathrm{2}{y}−\mathrm{4}}\end{cases} \\ $$$${x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} =\left(−{y}−\mathrm{2}\right)^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} \\ $$$$=\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{4}\right)^{\mathrm{4}} +\mathrm{8}{y}\left({y}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$=\left(−\mathrm{2}{y}−\mathrm{4}+\mathrm{4}{y}+\mathrm{4}\right)^{\mathrm{4}} +\mathrm{8}{y}\left(−\mathrm{2}{y}−\mathrm{4}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{2}{y}\right)^{\mathrm{4}} +\mathrm{32}{y}\left({y}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$=\mathrm{16}\left({y}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{32}{y}\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{4}\right) \\ $$$$=\mathrm{16}\left(−\mathrm{2}{y}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{32}{y}\left(−\mathrm{2}{y}−\mathrm{4}+\mathrm{4}{y}+\mathrm{4}\right) \\ $$$$=\mathrm{64}\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{4}\right)+\mathrm{32}{y}\left(\mathrm{2}{y}\right) \\ $$$$=\mathrm{64}\left(−\mathrm{2}{y}−\mathrm{4}+\mathrm{4}{y}+\mathrm{4}\right)+\mathrm{64}{y}^{\mathrm{2}} \\ $$$$=\mathrm{64}\left(\mathrm{2}{y}\right)+\mathrm{64}\left(−\mathrm{2}{y}−\mathrm{4}\right) \\ $$$$=\mathrm{128}{y}−\mathrm{128}{y}−\mathrm{256} \\ $$$$=−\mathrm{256} \\ $$
Answered by mr W last updated on 13/May/22
$${x},{y}\:{are}\:{roots}\:{of}\:{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{4}=\mathrm{0}. \\ $$$${z}^{\mathrm{2}} =−\mathrm{2}{z}−\mathrm{4} \\ $$$${z}^{\mathrm{3}} =−\mathrm{2}{z}^{\mathrm{2}} −\mathrm{4}{z}=−\mathrm{2}\left(−\mathrm{2}{z}−\mathrm{4}\right)−\mathrm{4}{z}=\mathrm{8} \\ $$$${i}.{e}.\:{x}^{\mathrm{3}} ={y}^{\mathrm{3}} =\mathrm{8} \\ $$$$ \\ $$$${x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} \\ $$$$={x}^{\mathrm{3}} {x}^{\mathrm{3}} {x}^{\mathrm{2}} +\mathrm{8}{y}^{\mathrm{3}} {y}^{\mathrm{2}} \\ $$$$=\mathrm{8}×\mathrm{8}{x}^{\mathrm{2}} +\mathrm{8}×\mathrm{8}{y}^{\mathrm{2}} \\ $$$$=\mathrm{64}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$=\mathrm{64}\left[\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}\right] \\ $$$$=\mathrm{64}\left[\left(−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}×\mathrm{4}\right] \\ $$$$=−\mathrm{64}×\mathrm{4} \\ $$$$=−\mathrm{256}\:\checkmark \\ $$
Commented by infinityaction last updated on 13/May/22
$${great}\:{sir}\:{very}\:{nice} \\ $$
Commented by peter frank last updated on 13/May/22
$$\mathrm{short}\:\mathrm{and}\:\mathrm{clear} \\ $$