Question Number 82067 by john santu last updated on 18/Feb/20
$$\begin{cases}{\mid{x}\mid\:−\sqrt[{\mathrm{3}\:}]{{y}+\mathrm{3}\:}\:=\:\mathrm{1}}\\{\left(−{x}\sqrt{−{x}}\right)^{\mathrm{2}} \:=\:{y}\:+\mathrm{10}}\end{cases} \\ $$$${find}\:{solution} \\ $$
Commented by john santu last updated on 18/Feb/20
Commented by MJS last updated on 18/Feb/20
$$\mathrm{there}'\mathrm{s}\:\mathrm{also}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{solution}: \\ $$$${x}=\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}} \\ $$$${y}=−\mathrm{2} \\ $$
Commented by john santu last updated on 18/Feb/20
$${where}\:{did}\:{you}\:{get}\:{it}?\:{isn}'{t}\:{the}\:{condition} \\ $$$${x}\:{must}\:{be}\:\leqslant\:\mathrm{0}? \\ $$
Commented by MJS last updated on 18/Feb/20
$${x}\leqslant\mathrm{0}\:\mathrm{if}\:{x}\in\mathbb{R} \\ $$$$\mathrm{if}\:{x}\in\mathbb{C}\:\Rightarrow\:\sqrt{−{x}}\:\mathrm{always}\:\mathrm{exists} \\ $$
Commented by john santu last updated on 18/Feb/20
$${yes}\:{sir}.\:{your}\:{right} \\ $$
Answered by MJS last updated on 18/Feb/20
$$\begin{cases}{{y}=\mid{x}\mid^{\mathrm{3}} −\mathrm{3}\mid{x}\mid^{\mathrm{2}} +\mathrm{3}\mid{x}\mid−\mathrm{4}\:\Rightarrow\:{y}\in\mathbb{R}\forall{x}\in\mathbb{C}}\\{{y}=−{x}^{\mathrm{3}} −\mathrm{10}}\end{cases} \\ $$$$\Rightarrow\:−{x}^{\mathrm{3}} −\mathrm{10}\in\mathbb{R} \\ $$$$ \\ $$$$\mid{x}\mid^{\mathrm{3}} −\mathrm{3}\mid{x}\mid^{\mathrm{2}} +\mathrm{3}\mid{x}\mid−\mathrm{4}=−{x}^{\mathrm{3}} −\mathrm{10} \\ $$$$\mathrm{let}\:{x}={a}+{b}\mathrm{i} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{3}\right)+{a}^{\mathrm{3}} −\mathrm{3}\left({a}^{\mathrm{2}} +{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\right)+\mathrm{i}\left(\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}=\mathrm{0} \\ $$$$\begin{cases}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{3}\right)+{a}^{\mathrm{3}} −\mathrm{3}\left({a}^{\mathrm{2}} +{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0}}\\{\left(\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}=\mathrm{0}\:\Rightarrow\:{b}=\mathrm{0}\vee{b}=\pm{a}\sqrt{\mathrm{3}}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\:{b}=\mathrm{0} \\ $$$$\mid{a}\mid^{\mathrm{3}} +{a}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}\mid{a}\mid+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\mathrm{1}.\mathrm{1}\right)\:{a}>\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{2}{a}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}\approx−.\mathrm{854}\:\mathrm{no}\:\mathrm{solution} \\ $$$$\:\:\:\:\:\left(\mathrm{1}.\mathrm{2}\right)\:{a}<\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{3}{a}^{\mathrm{2}} −\mathrm{3}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}=−\mathrm{2}\vee{a}=\mathrm{1}\:\Rightarrow\:{a}=−\mathrm{2} \\ $$$${x}_{\mathrm{1}} =−\mathrm{2}\wedge{y}_{\mathrm{1}} =−\mathrm{2} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{b}=\pm{a}\sqrt{\mathrm{3}} \\ $$$$\mathrm{8}\mid{a}\mid^{\mathrm{3}} −\mathrm{8}{a}^{\mathrm{3}} −\mathrm{12}{a}^{\mathrm{2}} +\mathrm{6}\mid{a}\mid+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\mathrm{2}.\mathrm{1}\right)\:{a}<\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{16}{a}^{\mathrm{3}} −\mathrm{12}{a}^{\mathrm{2}} −\mathrm{6}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}\approx.\mathrm{427}\:\mathrm{no}\:\mathrm{solution} \\ $$$$\:\:\:\:\:\left(\mathrm{2}.\mathrm{2}\right)\:{a}>\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{12}{a}^{\mathrm{2}} +\mathrm{6}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\vee{a}=\mathrm{1}\:\Rightarrow\:{a}=\mathrm{1} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}}\wedge{y}_{\mathrm{2},\:\mathrm{3}} =−\mathrm{2} \\ $$
Commented by john santu last updated on 18/Feb/20
$${okay}\:{sir}.\:{i}\:{agree}\:{your}\:{way}\: \\ $$
Commented by MJS last updated on 18/Feb/20
$$\mathrm{just}\:\mathrm{for}\:\mathrm{fun},\:\mathrm{I}\:\mathrm{always}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{complex} \\ $$$$\mathrm{solutions}\:\mathrm{too} \\ $$