Menu Close

x-y-3-1-3-1-x-x-2-y-10-find-solution-




Question Number 82067 by john santu last updated on 18/Feb/20
 { ((∣x∣ −((y+3 ))^(1/(3 ))  = 1)),(((−x(√(−x)))^2  = y +10)) :}  find solution
{xy+33=1(xx)2=y+10findsolution
Commented by john santu last updated on 18/Feb/20
Commented by MJS last updated on 18/Feb/20
there′s also a complex solution:  x=1±i(√3)  y=−2
theresalsoacomplexsolution:x=1±i3y=2
Commented by john santu last updated on 18/Feb/20
where did you get it? isn′t the condition  x must be ≤ 0?
wheredidyougetit?isnttheconditionxmustbe0?
Commented by MJS last updated on 18/Feb/20
x≤0 if x∈R  if x∈C ⇒ (√(−x)) always exists
x0ifxRifxCxalwaysexists
Commented by john santu last updated on 18/Feb/20
yes sir. your right
yessir.yourright
Answered by MJS last updated on 18/Feb/20
 { ((y=∣x∣^3 −3∣x∣^2 +3∣x∣−4 ⇒ y∈R∀x∈C)),((y=−x^3 −10)) :}  ⇒ −x^3 −10∈R    ∣x∣^3 −3∣x∣^2 +3∣x∣−4=−x^3 −10  let x=a+bi  (√(a^2 +b^2 ))(a^2 +b^2 +3)+a^3 −3(a^2 +ab^2 +b^2 −2)+i(3a^2 −b^2 )b=0   { (((√(a^2 +b^2 ))(a^2 +b^2 +3)+a^3 −3(a^2 +ab^2 +b^2 −2)=0)),(((3a^2 −b^2 )b=0 ⇒ b=0∨b=±a(√3))) :}  (1) b=0  ∣a∣^3 +a^3 −3a^2 +3∣a∣+6=0       (1.1) a>0       2a^3 −3a^2 +3a+6=0 ⇒ a≈−.854 no solution       (1.2) a<0       −3a^2 −3a+6=0 ⇒ a=−2∨a=1 ⇒ a=−2  x_1 =−2∧y_1 =−2    (2) b=±a(√3)  8∣a∣^3 −8a^3 −12a^2 +6∣a∣+6=0       (2.1) a<0       −16a^3 −12a^2 −6a+6=0 ⇒ a≈.427 no solution       (2.2) a>0       −12a^2 +6a+6=0 ⇒ −(1/2)∨a=1 ⇒ a=1  x_(2, 3) =1±i(√3)∧y_(2, 3) =−2
{y=∣x33x2+3x4yRxCy=x310x310Rx33x2+3x4=x310letx=a+bia2+b2(a2+b2+3)+a33(a2+ab2+b22)+i(3a2b2)b=0{a2+b2(a2+b2+3)+a33(a2+ab2+b22)=0(3a2b2)b=0b=0b=±a3(1)b=0a3+a33a2+3a+6=0(1.1)a>02a33a2+3a+6=0a.854nosolution(1.2)a<03a23a+6=0a=2a=1a=2x1=2y1=2(2)b=±a38a38a312a2+6a+6=0(2.1)a<016a312a26a+6=0a.427nosolution(2.2)a>012a2+6a+6=012a=1a=1x2,3=1±i3y2,3=2
Commented by john santu last updated on 18/Feb/20
okay sir. i agree your way
okaysir.iagreeyourway
Commented by MJS last updated on 18/Feb/20
just for fun, I always try to find complex  solutions too
justforfun,Ialwaystrytofindcomplexsolutionstoo

Leave a Reply

Your email address will not be published. Required fields are marked *