Question Number 50279 by Saorey last updated on 15/Dec/18
$$\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{6}}\\{\mathrm{y}+\mathrm{z}=\mathrm{10}}\end{cases}\:\:\left(\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\right) \\ $$
Answered by mr W last updated on 15/Dec/18
$${if}\:{x},{y},{z}\:{are}\:{integers},{then} \\ $$$$\left({x},{y},{z}\right)=\left(\mathrm{1},\mathrm{5},\mathrm{5}\right)/\left(\mathrm{2},\mathrm{4},\mathrm{6}\right)/\left(\mathrm{3},\mathrm{3},\mathrm{7}\right)/\left(\mathrm{4},\mathrm{2},\mathrm{8}\right)/\left(\mathrm{5},\mathrm{1},\mathrm{9}\right) \\ $$$${if}\:{x},{y},{z}\:{are}\:{real},\:{then} \\ $$$${x}=\mathrm{6}−{a} \\ $$$${y}={a} \\ $$$${z}=\mathrm{10}−{a} \\ $$$${with}\:\mathrm{0}<{a}<\mathrm{6} \\ $$
Answered by Rasheed.Sindhi last updated on 15/Dec/18
$$\mathrm{x}+\mathrm{y}=\mathrm{6}\:\wedge\:\mathrm{x},\mathrm{y}>\mathrm{0}\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{0}\:<\mathrm{x},\mathrm{y}<\mathrm{6}\Rightarrow\mathrm{x},\mathrm{y}\in\left(\mathrm{0},\mathrm{6}\right) \\ $$$$\mathrm{y}+\mathrm{z}=\mathrm{10}\:\wedge\:\mathrm{y},\mathrm{z}>\mathrm{0}\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{0}<\mathrm{y},\mathrm{z}<\mathrm{10}\Rightarrow\mathrm{y},\mathrm{z}\in\left(\mathrm{0},\mathrm{10}\right) \\ $$$$\mathrm{x}\in\left(\mathrm{0},\mathrm{6}\right)\: \\ $$$$\mathrm{y}\in\:\left(\mathrm{0},\mathrm{6}\right)\cap\left(\mathrm{0},\mathrm{10}\right)=\left(\mathrm{0},\mathrm{6}\right) \\ $$$$\mathrm{z}\in\left(\mathrm{4},\mathrm{10}\right) \\ $$$$\:\: \\ $$
Commented by Rasheed.Sindhi last updated on 16/Dec/18
$$\mathrm{THANKS}\:\mathrm{for}\:\mathrm{your}\:\mathrm{warm}\:\mathrm{welcome}\:{SIR}! \\ $$
Commented by mr W last updated on 15/Dec/18
$${nice}\:{to}\:“{see}''\:{you}\:{again}\:{sir}! \\ $$$${great}\:{come}\:{back}! \\ $$
Commented by mr W last updated on 16/Dec/18
$${thanks}\:{for}\:{coming}\:{back}\:{sir}! \\ $$