Menu Close

x-y-a-z-bx-c-bz-xy-d-Find-yz-in-terms-of-a-b-c-d-




Question Number 54595 by ajfour last updated on 07/Feb/19
     x+y=a       z+bx=c       bz+xy=d       Find yz in terms of a,b,c,d.
x+y=az+bx=cbz+xy=dFindyzintermsofa,b,c,d.
Commented by mr W last updated on 07/Feb/19
y=a−x  z=c−bx  b(c−bx)+x(a−x)=d  x^2 +(b^2 −a)x+d−bc=0  x=((a−b^2 ±(√((b^2 −a)^2 −4(d−bc))))/2)  yz=(a−x)(c−bx)  ⇒yz=(([a+b^2 ±(√((b^2 −a)^2 −4(d−bc)))][2c+b^3 −ab±b(√((b^2 −a)^2 −4(d−bc)))])/4)
y=axz=cbxb(cbx)+x(ax)=dx2+(b2a)x+dbc=0x=ab2±(b2a)24(dbc)2yz=(ax)(cbx)yz=[a+b2±(b2a)24(dbc)][2c+b3ab±b(b2a)24(dbc)]4
Commented by ajfour last updated on 07/Feb/19
Thanks Sir, but we can make use  of eq. in x^2  only to get x^2  in terms  of x and then substitute, doing this  i get  yz=ac+b^2 c−bd−(c+b^3 )x   i get  yz=ac+b^2 c−bd    −(c+b^3 )((a−b^2 ±(√((b^2 −a)^2 −4(d−bc))))/2)  .
ThanksSir,butwecanmakeuseofeq.inx2onlytogetx2intermsofxandthensubstitute,doingthisigetyz=ac+b2cbd(c+b3)xigetyz=ac+b2cbd(c+b3)ab2±(b2a)24(dbc)2.
Commented by mr W last updated on 07/Feb/19
right sir.
rightsir.

Leave a Reply

Your email address will not be published. Required fields are marked *