Menu Close

x-y-and-z-are-numbers-Show-that-max-x-y-x-y-x-y-2-and-min-x-y-x-y-x-y-2-then-find-a-formula-for-max-x-y-z-




Question Number 157168 by mathocean1 last updated on 20/Oct/21
x , y and z are numbers.  Show that max(x, y)=((x+y+∣x−y∣)/2) and min(x,y)=((x+y−∣x−y∣)/2)  then find a formula for   max(x,y,z).
$${x}\:,\:{y}\:{and}\:{z}\:{are}\:{numbers}. \\ $$$${Show}\:{that}\:{max}\left({x},\:{y}\right)=\frac{{x}+{y}+\mid{x}−{y}\mid}{\mathrm{2}}\:{and}\:{min}\left({x},{y}\right)=\frac{{x}+{y}−\mid{x}−{y}\mid}{\mathrm{2}} \\ $$$${then}\:{find}\:{a}\:{formula}\:{for}\: \\ $$$${max}\left({x},{y},{z}\right). \\ $$
Answered by puissant last updated on 20/Oct/21
→max(x;y)=(1/2)max(2x;2y)  =(1/2)max(x−y+x+y ; y−x+x+y)  =(1/2)(x+y+max(x−y ; y−x)  =(1/2)(x+y+∣x−y∣) = ((x+y+∣x−y∣)/2)  →min(x;y)=(1/2)min(2x;2y)  =(1/2)min(x−y+x+y ; y−x+x+y)  =(1/2)(x+y+min(x−y ; y−x))  =(1/2)(x+y−∣x−y∣)=((x+y−∣x−y∣)/2)  → max(x ; y ; z)= max(max(x;y);z)    =((max(x;y)+z+∣max(x;y)−z∣)/2)  =((((x+y+∣x−y∣)/2)+z+∣((x+y+∣x−y∣)/2)−z∣)/2)..               ............Le puissant...........
$$\rightarrow{max}\left({x};{y}\right)=\frac{\mathrm{1}}{\mathrm{2}}{max}\left(\mathrm{2}{x};\mathrm{2}{y}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{max}\left({x}−{y}+{x}+{y}\:;\:{y}−{x}+{x}+{y}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}+{max}\left({x}−{y}\:;\:{y}−{x}\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}+\mid{x}−{y}\mid\right)\:=\:\frac{{x}+{y}+\mid{x}−{y}\mid}{\mathrm{2}} \\ $$$$\rightarrow{min}\left({x};{y}\right)=\frac{\mathrm{1}}{\mathrm{2}}{min}\left(\mathrm{2}{x};\mathrm{2}{y}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{min}\left({x}−{y}+{x}+{y}\:;\:{y}−{x}+{x}+{y}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}+{min}\left({x}−{y}\:;\:{y}−{x}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}−\mid{x}−{y}\mid\right)=\frac{{x}+{y}−\mid{x}−{y}\mid}{\mathrm{2}} \\ $$$$\rightarrow\:{max}\left({x}\:;\:{y}\:;\:{z}\right)=\:{max}\left({max}\left({x};{y}\right);{z}\right) \\ $$$$ \\ $$$$=\frac{{max}\left({x};{y}\right)+{z}+\mid{max}\left({x};{y}\right)−{z}\mid}{\mathrm{2}} \\ $$$$=\frac{\frac{{x}+{y}+\mid{x}−{y}\mid}{\mathrm{2}}+{z}+\mid\frac{{x}+{y}+\mid{x}−{y}\mid}{\mathrm{2}}−{z}\mid}{\mathrm{2}}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…………\mathscr{L}{e}\:{puissant}……….. \\ $$
Commented by mathocean1 last updated on 22/Oct/21
thanks le puissant.
$${thanks}\:{le}\:{puissant}. \\ $$
Commented by puissant last updated on 24/Oct/21
de rien...
$${de}\:{rien}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *