Menu Close

x-y-are-different-positive-integers-with-1-x-1-y-1-5-find-x-y-




Question Number 177083 by mr W last updated on 30/Sep/22
x, y are different positive integers  with (1/x)+(1/y)=(1/5). find x+y=?
x,yaredifferentpositiveintegerswith1x+1y=15.findx+y=?
Answered by mr W last updated on 30/Sep/22
xy=5(x+y)  x or y must be a multiple of 5,   say x=5k  ky=5k+y  (k−1)y=5k  1) k−1=5, y=k   ⇒k=6, y=6, x=5×6=30  2) k−1=1, y=5k  ⇒k=2, y=10, x=10  for x≠y: (x, y)=(30, 6)=(6, 30)  ⇒x+y=36
xy=5(x+y)xorymustbeamultipleof5,sayx=5kky=5k+y(k1)y=5k1)k1=5,y=kk=6,y=6,x=5×6=302)k1=1,y=5kk=2,y=10,x=10forxy:(x,y)=(30,6)=(6,30)x+y=36
Answered by kapoorshah last updated on 01/Oct/22
(1/y) = (1/5) − (1/x)  (1/y) = ((x − 5)/(5x))  y = ((5x )/(x − 5))  y = ((5(x − 5) + 25 )/(x − 5))  y = 5 + (( 25 )/(x − 5))  x − 5 = 1 ⇒ x = 6   y = 30  x − 5 = 5 ⇒ x = 10   y = 10  rejected  x − 5 = 25 ⇒ x = 30   y = 6
1y=151x1y=x55xy=5xx5y=5(x5)+25x5y=5+25x5x5=1x=6y=30x5=5x=10y=10rejectedx5=25x=30y=6
Commented by mr W last updated on 01/Oct/22
very nice sir! thanks!
verynicesir!thanks!
Answered by mr W last updated on 01/Oct/22
5x+5y−xy=0  (x−5)(y−5)=25  x−5=1, y−5=25 ⇒x=6, y=30 ✓  x−5=5, y−5=5 ⇒ x=10, y=10
5x+5yxy=0(x5)(y5)=25x5=1,y5=25x=6,y=30x5=5,y5=5x=10,y=10

Leave a Reply

Your email address will not be published. Required fields are marked *