Question Number 154400 by mathdanisur last updated on 18/Sep/21
$$\mathrm{x}\sqrt{\mathrm{y}}\:-\:\mathrm{y}\sqrt{\mathrm{x}}\:=\:\mathrm{82} \\ $$$$\mathrm{x}\sqrt{\mathrm{x}}\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:=\:\mathrm{83} \\ $$$$\frac{\mathrm{9}}{\mathrm{5}}\:\centerdot\:\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:? \\ $$
Answered by TheHoneyCat last updated on 20/Sep/21
$$\mathrm{just}\:\mathrm{so}\:\mathrm{you}\:\mathrm{understand}\:\mathrm{my}\:\mathrm{mess}\:\left(\mathrm{1}\right)\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{first}\:\mathrm{equation}\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{the}\:\mathrm{other} \\ $$$$\mathrm{other}\:\mathrm{names}\:\mathrm{will}\:\mathrm{be}\:\mathrm{given}\:\mathrm{as}\:\mathrm{I}\:\mathrm{go}\:\left({in}\:{blue}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:−\:\:\left(\mathrm{1}\right)\:\Rightarrow\:\left({x}+{y}\right)\sqrt{{x}}+\left({y}−{x}\right)\sqrt{{y}}=\mathrm{1}\:\left(\mathrm{3}\right) \\ $$$$\mathrm{82}\left(\mathrm{3}\right)−\left(\mathrm{1}\right)\Rightarrow\:\left(\mathrm{82}{x}+\mathrm{81}{y}\right)\sqrt{{x}}+\left(\mathrm{82}{y}−\mathrm{81}{x}\right)\sqrt{{y}}=\mathrm{0}\:\left(\mathrm{1}'\right) \\ $$$$\mathrm{83}\left(\mathrm{3}\right)−\left(\mathrm{2}\right)\Rightarrow\:\left(\mathrm{82}{x}+\mathrm{83}{y}\right)\sqrt{{x}}+\left(\mathrm{82}{y}−\mathrm{83}{x}\right)\sqrt{{y}}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{or}\:\mathrm{to}\:\mathrm{be}\:\mathrm{more}\:\mathrm{precise}\:: \\ $$$$\left(\mathrm{1}\right)\wedge\left(\mathrm{2}\right)\:\Leftrightarrow\:\:\left(\mathrm{1}'\right)\wedge\left(\mathrm{2}'\right) \\ $$$${its}\:{just}\:{linear}\:{algebra}. \\ $$$${nothing}\:{fancy},\:{its}\:{just}\:{to}\:{be}\:{shure}\:{I}\:{don}'{t}\:{forget}\:{a}\:{constraint} \\ $$$$ \\ $$$$\begin{cases}{\left(\mathrm{1}'\right)}\\{\left(\mathrm{2}'\right)}\end{cases}\Leftrightarrow\begin{cases}{\left(\mathrm{1}'\right)}\\{\left[\left(\mathrm{2}'\right)−\left(\mathrm{1}'\right)\right]\boldsymbol{\div}\mathrm{2}}\end{cases}\Leftrightarrow\begin{cases}{\left(\mathrm{82}{x}+\mathrm{81}{y}\right)\sqrt{{x}}+\left(\mathrm{82}{y}−\mathrm{81}{x}\right)\sqrt{{y}}=\mathrm{0}}\\{{y}\sqrt{{x}}−{x}\sqrt{{y}}=\mathrm{0}\:\left(\mathrm{4}\right)}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\left[\left(\mathrm{1}'\right)−\left(\mathrm{4}\right)\right]\boldsymbol{\div}\mathrm{82}}\\{\left(\mathrm{4}\right)}\end{cases}\Leftrightarrow\begin{cases}{{x}\sqrt{{x}}+{y}\sqrt{{y}}=\mathrm{0}\:\left(\mathrm{5}\right)}\\{{y}\sqrt{{x}}−{x}\sqrt{{y}}=\mathrm{0}}\end{cases} \\ $$$$\Leftrightarrow\begin{pmatrix}{{x}}&{{y}}\\{{y}}&{−{x}}\end{pmatrix}×\begin{pmatrix}{\sqrt{{x}}}\\{\sqrt{{y}}}\end{pmatrix}=\mathrm{0}\:{and}\:{by}\:{the}\:{way}\:\left(\sqrt{{x}},\sqrt{{y}}\right)=\left(\mathrm{0},\mathrm{0}\right)\:\Leftrightarrow\:\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right)\:{is}\:{not}\:{a}\:{solution} \\ $$$$\mathrm{so}\:\begin{pmatrix}{{x}}&{{y}}\\{{y}}&{−{x}}\end{pmatrix}\:\mathrm{is}\:\mathrm{not}\:\mathrm{invertible} \\ $$$${ie}\:\left(\mathrm{4}\right)\wedge\left(\mathrm{5}\right)\Rightarrow−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\: \\ $$$$\mathrm{so}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{solutions}_{\blacksquare} \\ $$$$ \\ $$$${by}\:{the}\:{way},\:{this}\:{could}\:{have}\:{beenredicted}\:{with}\:{geogebra} \\ $$$${indeed},\:{graphicaly}\:\left(\mathrm{1}\right)\Rightarrow{x}\geqslant\mathrm{40}\:\left({ruffly}\right) \\ $$$${and}\:\left(\mathrm{2}\right)\:\Rightarrow\:{x}\leqslant\mathrm{20}\:\left({again},\:{its}\:{just}\:{an}\:{idea}\right) \\ $$$${of}\:{course}\:{you}\:{could}\:{say}\:{there}\:{migth}\:{be}\:{solutions}\:{elsewere} \\ $$$${but}\:{if}\:{you}\:{pay}\:{attention}\:{the}\:{curves}\:{discribded}\:{by}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right)\:{are}\:{continuous} \\ $$$${since}\:{their}\:{edges}\:{can}\:{be}\:{observed}\:{on}\:{geogebra}\:{you}\:{can}\:{be}\:{sure}\:{you}\:{are}\:{seeing}\:{everything} \\ $$$$ \\ $$
Commented by TheHoneyCat last updated on 20/Sep/21