Menu Close

x-y-z-0-and-x-y-z-3-prove-that-x-5-1-12-y-5-1-12-z-5-1-12-xy-yz-zx-




Question Number 149474 by mathdanisur last updated on 05/Aug/21
x;y;z≥0  and  x+y+z=3  prove that:  (x^5 )^(1/(12))  + (y^5 )^(1/(12))  + (z^5 )^(1/(12))  ≥ xy + yz + zx
$${x};{y};{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:{x}+{y}+{z}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{12}}]{{x}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{y}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{z}^{\mathrm{5}} }\:\geqslant\:{xy}\:+\:{yz}\:+\:{zx} \\ $$
Commented by dumitrel last updated on 06/Aug/21
hint ?
$${hint}\:? \\ $$
Commented by mathdanisur last updated on 06/Aug/21
Ser, inequality is given in this way
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{given}\:\mathrm{in}\:\mathrm{this}\:\mathrm{way} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *