Question Number 13081 by 433 last updated on 13/May/17
![{ ((x+y+z=[1]_5 )),((xy=[2]_5 )),((yz=[1]_5 )) :} Solve system on Z_5](https://www.tinkutara.com/question/Q13081.png)
Answered by RasheedSindhi last updated on 14/May/17
![^(Rasheed Soomro) x+y+z+xy+yz=[1]_5 +[2]_5 + [1]_5 y+x+z+y(x+z)=[4]_5 y+(x+z)(1+y)=[4]_5 1+y+(x+z)(1+y)=[4]_5 +1 (1+y)(1+x+z)=[4]_5 +[1]_5 =[0]_5 (1+y)=[0]_5 or(1+x+z)=[0]_5 y=[−1]_5 or x+z=[−1]_5 y=[4]_5 or x+z=[4]_5 yz=[1]_5 [4]z=[16]_5 z= [((16)/4)]_5 =[4]_5 xy=[2]_5 ⇒x×[4]_5 =[2]_5 x×[4]_5 =[12] x=[((12)/4)]_5 =[3]_5 x=[3]_5 ,y=z=[4]_5 For example x=3,y=4,z=4](https://www.tinkutara.com/question/Q13092.png)
Commented by 433 last updated on 14/May/17
![You forgot x+z=[4]_5 but thank you](https://www.tinkutara.com/question/Q13094.png)
Commented by RasheedSindhi last updated on 14/May/17
![From above answer: { ((x+z=[4]_5 .........(i))),((xy=[2]_5 .............(ii))),((yz=[1]_5 ..............(iii))) :} (i)⇒x=[4]_5 −z (ii)⇒([4]_5 −z)y=[2]_5 [4]_5 y−yz=[2]_5 [4]_5 y−[1]_5 =[2]_5 (∵ yz=[1]_5 (iii) ) [4]_5 y=[2]_5 +[1]_5 =[3]_5 =[8]_5 y=[(8/4)]_5 =[2]_5 ⇒y=[2]_5 (ii)⇒x([2]_5 )=[2]_5 ⇒x=[1]_5 (i)⇒z=[4]_5 −x=[4]_5 −[1]_5 =[3]_5 z=[3]_5 x=[1]_5 , y=[2]_5 , z=[3]_5 For example: x=1 , y=2 , z=3](https://www.tinkutara.com/question/Q13096.png)
Commented by mrW1 last updated on 14/May/17

Commented by RasheedSindhi last updated on 16/May/17

Answered by RasheedSindhi last updated on 14/May/17
![AnOther Way_(−) ^(Rasheed Soomro) x+y+z≡1(mod 5).......I xy≡2(mod 5)..............II yz≡1(mod 5)..............III I+II+III⇒ x+y+z+xy+yz≡4(mod 5) y+(x+z)+y(x+z)≡4(mod 5) y+(x+z)(1+y)≡4(mod 5) 1+y+(x+z)(1+y)≡4+1(mod 5) (1+y)(1+x+z)≡0(mod 5) 1+y≡0 ∨ 1+x+z≡0 (mod 5) y≡−1 ∨ x+z≡−1 (mod 5) y≡4 ∨ x+z≡4 (mod 5).....A { ((y≡4(mod 5)..............(i))),((xy≡2≡12(mod 5)......(ii))) :} (ii)/(i)⇒x≡3(mod 5) { ((y≡4(mod 5)..............(iii))),((yz≡1≡16(mod 5).......(iv))) :} (iv)/(iii)⇒z≡4(mod 5) x,y,z≡3,4,4(mod 5) For example: x=3,y=4,z=4 2nd part x+z≡4(mod 5) [From A] x≡4−z(mod 5).............(v) xy≡2(mod 5) [From II]..(vi) From (v) &(vi): (4−z)y≡2(mod 5) 4y−yz≡2(mof 5) But yz≡1(mod 5) [From III] ∴ 4y−1≡2(mod 5) 4y≡3≡8(mod 5) y≡2(mod 5) II⇒x(2)≡2(mod 5) x≡1(mod 5) From I : z≡4−x(mod 5) z≡4−1(mod 5) z≡3(mod 5) x,y,z≡1,2,3(mod 5)](https://www.tinkutara.com/question/Q13095.png)