Menu Close

x-y-z-1-5-xy-2-5-yz-1-5-Solve-system-on-Z-5-




Question Number 13081 by 433 last updated on 13/May/17
 { ((x+y+z=[1]_5 )),((xy=[2]_5 )),((yz=[1]_5 )) :}  Solve system on Z_5
{x+y+z=[1]5xy=[2]5yz=[1]5SolvesystemonZ5
Answered by RasheedSindhi last updated on 14/May/17
^(Rasheed Soomro)   x+y+z+xy+yz=[1]_5 +[2]_5 + [1]_5   y+x+z+y(x+z)=[4]_5   y+(x+z)(1+y)=[4]_5   1+y+(x+z)(1+y)=[4]_5 +1  (1+y)(1+x+z)=[4]_5 +[1]_5 =[0]_5   (1+y)=[0]_5 or(1+x+z)=[0]_5   y=[−1]_5  or x+z=[−1]_5   y=[4]_5  or x+z=[4]_5   yz=[1]_5   [4]z=[16]_5   z= [((16)/4)]_5 =[4]_5   xy=[2]_5 ⇒x×[4]_5 =[2]_5   x×[4]_5 =[12]  x=[((12)/4)]_5 =[3]_5   x=[3]_5 ,y=z=[4]_5   For example  x=3,y=4,z=4
RasheedSoomrox+y+z+xy+yz=[1]5+[2]5+[1]5y+x+z+y(x+z)=[4]5y+(x+z)(1+y)=[4]51+y+(x+z)(1+y)=[4]5+1(1+y)(1+x+z)=[4]5+[1]5=[0]5(1+y)=[0]5or(1+x+z)=[0]5y=[1]5orx+z=[1]5y=[4]5orx+z=[4]5yz=[1]5[4]z=[16]5z=[164]5=[4]5xy=[2]5x×[4]5=[2]5x×[4]5=[12]x=[124]5=[3]5x=[3]5,y=z=[4]5Forexamplex=3,y=4,z=4
Commented by 433 last updated on 14/May/17
You forgot x+z=[4]_5  but thank you
Youforgotx+z=[4]5butthankyou
Commented by RasheedSindhi last updated on 14/May/17
From above answer:     { ((x+z=[4]_5 .........(i))),((xy=[2]_5 .............(ii))),((yz=[1]_5 ..............(iii))) :}  (i)⇒x=[4]_5 −z  (ii)⇒([4]_5 −z)y=[2]_5   [4]_5 y−yz=[2]_5   [4]_5 y−[1]_5 =[2]_5      (∵ yz=[1]_5   (iii) )  [4]_5 y=[2]_5 +[1]_5 =[3]_5 =[8]_5   y=[(8/4)]_5 =[2]_5 ⇒y=[2]_5   (ii)⇒x([2]_5 )=[2]_5           ⇒x=[1]_5   (i)⇒z=[4]_5 −x=[4]_5 −[1]_5 =[3]_5               z=[3]_5   x=[1]_5  , y=[2]_5  , z=[3]_5   For example:  x=1 , y=2 , z=3
Fromaboveanswer:{x+z=[4]5(i)xy=[2]5.(ii)yz=[1]5..(iii)(i)x=[4]5z(ii)([4]5z)y=[2]5[4]5yyz=[2]5[4]5y[1]5=[2]5(yz=[1]5(iii))[4]5y=[2]5+[1]5=[3]5=[8]5y=[84]5=[2]5y=[2]5(ii)x([2]5)=[2]5x=[1]5(i)z=[4]5x=[4]5[1]5=[3]5z=[3]5x=[1]5,y=[2]5,z=[3]5Forexample:x=1,y=2,z=3
Commented by mrW1 last updated on 14/May/17
Great job!
Greatjob!
Commented by RasheedSindhi last updated on 16/May/17
THαnX  Sir!
THαnXSir!
Answered by RasheedSindhi last updated on 14/May/17
AnOther Way_(−)         ^(Rasheed Soomro)   x+y+z≡1(mod 5).......I  xy≡2(mod 5)..............II  yz≡1(mod 5)..............III  I+II+III⇒       x+y+z+xy+yz≡4(mod 5)    y+(x+z)+y(x+z)≡4(mod 5)  y+(x+z)(1+y)≡4(mod 5)  1+y+(x+z)(1+y)≡4+1(mod 5)  (1+y)(1+x+z)≡0(mod 5)  1+y≡0 ∨ 1+x+z≡0 (mod 5)  y≡−1 ∨ x+z≡−1 (mod 5)  y≡4 ∨ x+z≡4 (mod 5).....A   { ((y≡4(mod 5)..............(i))),((xy≡2≡12(mod 5)......(ii))) :}  (ii)/(i)⇒x≡3(mod 5)   { ((y≡4(mod 5)..............(iii))),((yz≡1≡16(mod 5).......(iv))) :}  (iv)/(iii)⇒z≡4(mod 5)    x,y,z≡3,4,4(mod 5)  For example:  x=3,y=4,z=4  2nd part  x+z≡4(mod 5)  [From A]  x≡4−z(mod 5).............(v)  xy≡2(mod 5)  [From II]..(vi)  From (v) &(vi):  (4−z)y≡2(mod 5)  4y−yz≡2(mof 5)   But yz≡1(mod 5) [From III]  ∴  4y−1≡2(mod 5)        4y≡3≡8(mod 5)         y≡2(mod 5)  II⇒x(2)≡2(mod 5)            x≡1(mod 5)  From I : z≡4−x(mod 5)                 z≡4−1(mod 5)                 z≡3(mod 5)  x,y,z≡1,2,3(mod 5)
AnOtherWayRasheedSoomrox+y+z1(mod5).Ixy2(mod5)..IIyz1(mod5)..IIII+II+IIIx+y+z+xy+yz4(mod5)y+(x+z)+y(x+z)4(mod5)y+(x+z)(1+y)4(mod5)1+y+(x+z)(1+y)4+1(mod5)(1+y)(1+x+z)0(mod5)1+y01+x+z0(mod5)y1x+z1(mod5)y4x+z4(mod5)..A{y4(mod5)..(i)xy212(mod5)(ii)(ii)/(i)x3(mod5){y4(mod5)..(iii)yz116(mod5).(iv)(iv)/(iii)z4(mod5)x,y,z3,4,4(mod5)Forexample:x=3,y=4,z=42ndpartx+z4(mod5)[FromA]x4z(mod5).(v)xy2(mod5)[FromII]..(vi)From(v)&(vi):(4z)y2(mod5)4yyz2(mof5)Butyz1(mod5)[FromIII]4y12(mod5)4y38(mod5)y2(mod5)IIx(2)2(mod5)x1(mod5)FromI:z4x(mod5)z41(mod5)z3(mod5)x,y,z1,2,3(mod5)

Leave a Reply

Your email address will not be published. Required fields are marked *