Menu Close

x-y-z-are-real-numbers-x-y-z-4-x-2-y-2-z-2-10-x-3-y-3-z-3-22-Find-x-4-y-4-z-4-




Question Number 120952 by abony1303 last updated on 04/Nov/20
x,y,z are real numbers   { ((x+y+z=4)),((x^2 +y^2 +z^2 =10)),((x^3 +y^3 +z^3 =22)) :}     Find x^4 +y^4 +z^4
x,y,zarerealnumbers{x+y+z=4x2+y2+z2=10x3+y3+z3=22Findx4+y4+z4
Answered by MJS_new last updated on 04/Nov/20
z=4−x−y  let x=u−(√v)∧y=u+(√v)  ⇒   { ((z=4−2u)),((2v+2(3u^2 −8u+3)=0)),((6uv−6(u^3 −8u^2 +16u−7)=0)) :}  ⇒ −3u^2 −8u+3=((u^3 −8u^2 +16u−7)/u)  ⇔ u^3 −4u^2 +((19)/4)u−(7/4)=0  ⇔ (u−1)(u−((3−(√2))/2))(u−((3+(√2))/2))=0  take u=1 [or any other of the solutions]  ⇒ v=2  ⇒ x=1−(√2)∧y=1+(√2)∧z=2  ⇒ answer is 50
z=4xyletx=uvy=u+v{z=42u2v+2(3u28u+3)=06uv6(u38u2+16u7)=03u28u+3=u38u2+16u7uu34u2+194u74=0(u1)(u322)(u3+22)=0takeu=1[oranyotherofthesolutions]v=2x=12y=1+2z=2answeris50
Answered by Jamshidbek2311 last updated on 04/Nov/20
xy+yz+xz=3  xyz=−2  (xy)^2 +(yz)^2 +(xz)^2 =25  x^4 +y^4 +z^4 =50
xy+yz+xz=3xyz=2(xy)2+(yz)2+(xz)2=25x4+y4+z4=50

Leave a Reply

Your email address will not be published. Required fields are marked *