Menu Close

x-y-z-lt-0-x-3-yz-3-y-3-xz-6-z-3-xy-8-find-x-y-z-




Question Number 161242 by HongKing last updated on 14/Dec/21
x ; y ; z < 0  (x^3 /( (√(yz)))) = -3  ;  (y^3 /( (√(xz)))) = -6  ;  (z^3 /( (√(xy)))) = -8  find  x∙y∙z = ?
$$\mathrm{x}\:;\:\mathrm{y}\:;\:\mathrm{z}\:<\:\mathrm{0} \\ $$$$\frac{\mathrm{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{yz}}}\:=\:-\mathrm{3}\:\:;\:\:\frac{\mathrm{y}^{\mathrm{3}} }{\:\sqrt{\mathrm{xz}}}\:=\:-\mathrm{6}\:\:;\:\:\frac{\mathrm{z}^{\mathrm{3}} }{\:\sqrt{\mathrm{xy}}}\:=\:-\mathrm{8} \\ $$$$\mathrm{find}\:\:\mathrm{x}\centerdot\mathrm{y}\centerdot\mathrm{z}\:=\:? \\ $$
Answered by mr W last updated on 15/Dec/21
((x^3 y^3 z^3 )/( (√(x^2 y^2 z^2 ))))=−3×6×8  ((x^3 y^3 z^3 )/( −xyz))=−3×6×8  (xyz)^2 =3×6×8=12^2   ⇒xyz=−12
$$\frac{{x}^{\mathrm{3}} {y}^{\mathrm{3}} {z}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }}=−\mathrm{3}×\mathrm{6}×\mathrm{8} \\ $$$$\frac{{x}^{\mathrm{3}} {y}^{\mathrm{3}} {z}^{\mathrm{3}} }{\:−{xyz}}=−\mathrm{3}×\mathrm{6}×\mathrm{8} \\ $$$$\left({xyz}\right)^{\mathrm{2}} =\mathrm{3}×\mathrm{6}×\mathrm{8}=\mathrm{12}^{\mathrm{2}} \\ $$$$\Rightarrow{xyz}=−\mathrm{12} \\ $$
Commented by HongKing last updated on 17/Dec/21
thank you dear Sir cool
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *