Menu Close

x-y-z-R-2x-3y-4z-1-1-x-1-y-1-z-smallest-integer-value-




Question Number 115951 by Fikret last updated on 29/Sep/20
x,y,z ε R^+     2x+3y+4z=1  ⇒ (1/x)+(1/y)+(1/z) smallest integer value?
x,y,zϵR+2x+3y+4z=11x+1y+1zsmallestintegervalue?
Answered by 1549442205PVT last updated on 30/Sep/20
From the hypothesis we have   P=(1/x)+(1/y)+(1/z) =((2x+3y+4z)/x)+((2x+3y+4z)/y)  +((2x+3y+4z)/z)=2+3+4+3(y/x)+2(x/y)  +4(z/x)+2(x/z)+3(y/z)+4(z/y)  ≥2+3+4+3+2+4+2+3+4=27  (Since x,yz>0,(x/y),(y/x),(y/z),(z/y),(x/z),(z/x) has  least integeral value equal to 1 )  The equality ocurrs if and only if   { ((2x+3y+4z=1)),((x=y=z)) :}⇔x=y=z=(1/9)  Thus,the least integral value of P  is  ((1/x)+(1/y)+(1/z))_(min) =27 when  x=y=z=1/9
FromthehypothesiswehaveP=1x+1y+1z=2x+3y+4zx+2x+3y+4zy+2x+3y+4zz=2+3+4+3yx+2xy+4zx+2xz+3yz+4zy2+3+4+3+2+4+2+3+4=27(Sincex,yz>0,xy,yx,yz,zy,xz,zxhasleastintegeralvalueequalto1)Theequalityocurrsifandonlyif{2x+3y+4z=1x=y=zx=y=z=19Thus,theleastintegralvalueofPis(1x+1y+1z)min=27whenx=y=z=1/9
Commented by soumyasaha last updated on 01/Oct/20
     Assuming x, y, z positive, we have      ((2x+3y+4z)/3) ≥ ((2x.3y.4z))^(1/3)       ⇒ 24xyz ≤ (1/(27))      ⇒ (1/(xyz)) ≥ 27.24 ..........(i)      Again,  (((1/x)+(1/y)+(1/z))/3) ≥ (((1/x).(1/y).(1/y)))^(1/3)     ⇒ (1/x)+(1/y)+(1/z) ≥ 3.((1/(xyz)))^(1/3)     ⇒ (1/x)+(1/y)+(1/z) ≥ 3.((27.24))^(1/3)     ⇒ (1/x)+(1/y)+(1/z) ≥ 18.(3)^(1/3)    ∴ least integral value is 26
Assumingx,y,zpositive,wehave2x+3y+4z32x.3y.4z324xyz1271xyz27.24.(i)Again,1x+1y+1z31x.1y.1y31x+1y+1z3.1xyz31x+1y+1z3.27.2431x+1y+1z18.33leastintegralvalueis26

Leave a Reply

Your email address will not be published. Required fields are marked *