Menu Close

x-y-z-R-Find-the-minimum-value-of-this-expression-xyz-1-3x-x-8y-y-9z-6-z-




Question Number 160908 by naka3546 last updated on 10/Dec/21
x,y,z  ∈  R^+   Find  the  minimum  value  of  this  expression         ((xyz)/((1+3x)(x+8y)(y+9z)(6+z)))
$${x},{y},{z}\:\:\in\:\:\mathbb{R}^{+} \\ $$$${Find}\:\:{the}\:\:{minimum}\:\:{value}\:\:{of}\:\:{this}\:\:{expression}\: \\ $$$$\:\:\:\:\:\:\frac{{xyz}}{\left(\mathrm{1}+\mathrm{3}{x}\right)\left({x}+\mathrm{8}{y}\right)\left({y}+\mathrm{9}{z}\right)\left(\mathrm{6}+{z}\right)}\:\: \\ $$$$ \\ $$
Commented by mr W last updated on 25/Dec/21
do you know the solution?  i think there exists no minimum and  no maximun, since with x=y=z→0  it →+∞ and with x=y=z→∞ it →0.
$${do}\:{you}\:{know}\:{the}\:{solution}? \\ $$$${i}\:{think}\:{there}\:{exists}\:{no}\:{minimum}\:{and} \\ $$$${no}\:{maximun},\:{since}\:{with}\:{x}={y}={z}\rightarrow\mathrm{0} \\ $$$${it}\:\rightarrow+\infty\:{and}\:{with}\:{x}={y}={z}\rightarrow\infty\:{it}\:\rightarrow\mathrm{0}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *