Menu Close

x-y-z-t-Z-x-and-y-are-x-are-respectively-the-divisor-of-y-and-t-Justify-the-existence-of-k-Z-such-that-yt-xzk-Deduct-that-x-m-is-a-divisor-of-y-m-where-m-N-




Question Number 117116 by mathocean1 last updated on 10/Oct/20
x , y ,z , t ∈ Z.  x and y are x are respectively the  divisor of y and t.  Justify the existence of k ∈ Z such  that yt=xzk.  Deduct that x^(m ) is a divisor of y^m   where m ∈ N.
$${x}\:,\:{y}\:,{z}\:,\:{t}\:\in\:\mathbb{Z}. \\ $$$${x}\:{and}\:{y}\:{are}\:{x}\:{are}\:{respectively}\:{the} \\ $$$${divisor}\:{of}\:{y}\:{and}\:{t}. \\ $$$${Justify}\:{the}\:{existence}\:{of}\:{k}\:\in\:\mathbb{Z}\:{such} \\ $$$${that}\:{yt}={xzk}. \\ $$$${Deduct}\:{that}\:{x}^{{m}\:} {is}\:{a}\:{divisor}\:{of}\:{y}^{{m}} \\ $$$${where}\:{m}\:\in\:\mathbb{N}. \\ $$
Commented by 1549442205PVT last updated on 10/Oct/20
In R there is  no  concept of  a  divisor  of a number.It only is said in Z.You  look at question again,please.
$$\mathrm{In}\:\mathrm{R}\:\mathrm{there}\:\mathrm{is}\:\:\mathrm{no}\:\:\mathrm{concept}\:\mathrm{of}\:\:\mathrm{a}\:\:\mathrm{divisor} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{number}.\mathrm{It}\:\mathrm{only}\:\mathrm{is}\:\mathrm{said}\:\mathrm{in}\:\mathrm{Z}.\mathrm{You} \\ $$$$\mathrm{look}\:\mathrm{at}\:\mathrm{question}\:\mathrm{again},\mathrm{please}. \\ $$
Commented by mathocean1 last updated on 10/Oct/20
exactly it was an error
$${exactly}\:{it}\:{was}\:{an}\:{error} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *