Menu Close

x-yi-3-10-2y-8i-2-3-i-find-x-amp-y-




Question Number 104657 by bobhans last updated on 23/Jul/20
(x+yi)^3  = ((10(2y+8i)^2 )/(3−i))  find x & y
$$\left({x}+{yi}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{10}\left(\mathrm{2}{y}+\mathrm{8}{i}\right)^{\mathrm{2}} }{\mathrm{3}−{i}} \\ $$$${find}\:{x}\:\&\:{y} \\ $$
Answered by bramlex last updated on 23/Jul/20
(x+yi)^3  = ((10(2y+8i)^2 (3+i))/(10))  (x+yi)^3  = 4(3+i)(y+4i)^2   x^3 +3x^2 yi−3xy^2 −y^3 i =  4(3+i)(y^2 +8yi−16)  x^3 +3x^2 yi−3xy^2 −y^3 i = 4(3y^2 +24yi−48+  y^2 i−8y−16i)  x^3 +3x^2 yi−3xy^2 −y^3 i = 12y^2 +96yi−192+  4y^2 i−32y−64i)  → { ((x^3 −3xy^2  = 12y^2 −192−32y)),((3x^2 yi −y^3 i = 4y^2 i−64i  )) :}  we get    { ((x^3 −3xy^2  = 12y^2 −32y−192)),((3x^2 y−y^3  = 4y^2 −64)) :}
$$\left({x}+{yi}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{10}\left(\mathrm{2}{y}+\mathrm{8}{i}\right)^{\mathrm{2}} \left(\mathrm{3}+{i}\right)}{\mathrm{10}} \\ $$$$\left({x}+{yi}\right)^{\mathrm{3}} \:=\:\mathrm{4}\left(\mathrm{3}+{i}\right)\left({y}+\mathrm{4}{i}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} {yi}−\mathrm{3}{xy}^{\mathrm{2}} −{y}^{\mathrm{3}} {i}\:= \\ $$$$\mathrm{4}\left(\mathrm{3}+{i}\right)\left({y}^{\mathrm{2}} +\mathrm{8}{yi}−\mathrm{16}\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} {yi}−\mathrm{3}{xy}^{\mathrm{2}} −{y}^{\mathrm{3}} {i}\:=\:\mathrm{4}\left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{24}{yi}−\mathrm{48}+\right. \\ $$$$\left.{y}^{\mathrm{2}} {i}−\mathrm{8}{y}−\mathrm{16}{i}\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} {yi}−\mathrm{3}{xy}^{\mathrm{2}} −{y}^{\mathrm{3}} {i}\:=\:\mathrm{12}{y}^{\mathrm{2}} +\mathrm{96}{yi}−\mathrm{192}+ \\ $$$$\left.\mathrm{4}{y}^{\mathrm{2}} {i}−\mathrm{32}{y}−\mathrm{64}{i}\right) \\ $$$$\rightarrow\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} \:=\:\mathrm{12}{y}^{\mathrm{2}} −\mathrm{192}−\mathrm{32}{y}}\\{\mathrm{3}{x}^{\mathrm{2}} {yi}\:−{y}^{\mathrm{3}} {i}\:=\:\mathrm{4}{y}^{\mathrm{2}} {i}−\mathrm{64}{i}\:\:}\end{cases} \\ $$$${we}\:{get}\: \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} \:=\:\mathrm{12}{y}^{\mathrm{2}} −\mathrm{32}{y}−\mathrm{192}}\\{\mathrm{3}{x}^{\mathrm{2}} {y}−{y}^{\mathrm{3}} \:=\:\mathrm{4}{y}^{\mathrm{2}} −\mathrm{64}}\end{cases} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *