Menu Close

x-Z-15-48a-1-x-mod-17-find-x-




Question Number 144961 by mathdanisur last updated on 30/Jun/21
x∈Z^+   15^(48a+1)  ≡ x (mod 17)  find  x=?
$${x}\in\mathbb{Z}^{+} \\ $$$$\mathrm{15}^{\mathrm{48}\boldsymbol{{a}}+\mathrm{1}} \:\equiv\:{x}\:\left({mod}\:\mathrm{17}\right)\:\:{find}\:\:{x}=?\: \\ $$
Answered by Rasheed.Sindhi last updated on 01/Jul/21
15^8 ≡x(mod17)  15^8 ≡1(mod17)  (15^8 )^(6a) ≡(1)^(6a) (mod17)  15^(48a) ≡1  15^(48a) .15≡1.15(mod17)  15^(48a+1) ≡15(mod17)  x≡15(mod17)  x=15+17k; k∈{0,1,2,....}
$$\mathrm{15}^{\mathrm{8}} \equiv{x}\left({mod}\mathrm{17}\right) \\ $$$$\mathrm{15}^{\mathrm{8}} \equiv\mathrm{1}\left({mod}\mathrm{17}\right) \\ $$$$\left(\mathrm{15}^{\mathrm{8}} \right)^{\mathrm{6}{a}} \equiv\left(\mathrm{1}\right)^{\mathrm{6}{a}} \left({mod}\mathrm{17}\right) \\ $$$$\mathrm{15}^{\mathrm{48}{a}} \equiv\mathrm{1} \\ $$$$\mathrm{15}^{\mathrm{48}{a}} .\mathrm{15}\equiv\mathrm{1}.\mathrm{15}\left({mod}\mathrm{17}\right) \\ $$$$\mathrm{15}^{\mathrm{48}{a}+\mathrm{1}} \equiv\mathrm{15}\left({mod}\mathrm{17}\right) \\ $$$${x}\equiv\mathrm{15}\left({mod}\mathrm{17}\right) \\ $$$${x}=\mathrm{15}+\mathrm{17}{k};\:{k}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},….\right\} \\ $$
Commented by mathdanisur last updated on 01/Jul/21
cool Sir thank you, answer x=15?
$${cool}\:{Sir}\:{thank}\:{you},\:{answer}\:{x}=\mathrm{15}? \\ $$
Commented by Rasheed.Sindhi last updated on 01/Jul/21
 15+17k; Where k∈{0,1,2,...}
$$\:\mathrm{15}+\mathrm{17}{k};\:{Where}\:{k}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},…\right\} \\ $$
Commented by mathdanisur last updated on 01/Jul/21
Sir, but answer: 15
$${Sir},\:{but}\:{answer}:\:\mathrm{15} \\ $$
Commented by Rasheed.Sindhi last updated on 01/Jul/21
The least positive integral value  of  x is 15
$$\mathcal{T}{he}\:{least}\:{positive}\:{integral}\:{value} \\ $$$${of}\:\:{x}\:{is}\:\mathrm{15} \\ $$
Commented by mathdanisur last updated on 01/Jul/21
thanks Sir
$${thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *