Menu Close

xdx-a-bx-




Question Number 184346 by Matica last updated on 05/Jan/23
  ∫ ((xdx)/(a+bx)) = ?
$$\:\:\int\:\frac{{xdx}}{{a}+{bx}}\:=\:? \\ $$
Answered by SEKRET last updated on 05/Jan/23
  (1/b) ∙∫ ((bx+a−a)/(bx+a))dx=   (1/b)∙∫ 1 −a∙(1/(bx+a))dx=(x/b)−(a/b^2 )∙ln(bx+a)+C     aswer (1/b^2 )∙(bx−a∙ln(bx+a)) +C
$$\:\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}\:\centerdot\int\:\frac{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}}\boldsymbol{\mathrm{dx}}= \\ $$$$\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}\centerdot\int\:\mathrm{1}\:−\boldsymbol{\mathrm{a}}\centerdot\frac{\mathrm{1}}{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}}\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{b}}}−\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}\right)+\boldsymbol{\mathrm{C}} \\ $$$$\:\:\:\boldsymbol{\mathrm{aswer}}\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\centerdot\left(\boldsymbol{\mathrm{bx}}−\boldsymbol{\mathrm{a}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}\right)\right)\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *