Menu Close

xdx-sin-2-x-3-




Question Number 97361 by student work last updated on 07/Jun/20
∫((xdx)/(sin^2 x−3))=?
$$\int\frac{\mathrm{xdx}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{3}}=? \\ $$
Commented by student work last updated on 07/Jun/20
who is intellagent?
$$\mathrm{who}\:\mathrm{is}\:\mathrm{intellagent}? \\ $$
Commented by mr W last updated on 07/Jun/20
i don′t know who is intelligent.  but according to this question of you,  i know at least who is not intelligent.
$${i}\:{don}'{t}\:{know}\:{who}\:{is}\:{intelligent}. \\ $$$${but}\:{according}\:{to}\:{this}\:{question}\:{of}\:{you}, \\ $$$${i}\:{know}\:{at}\:{least}\:{who}\:{is}\:{not}\:{intelligent}. \\ $$
Commented by som(math1967) last updated on 07/Jun/20
����
Commented by student work last updated on 07/Jun/20
solve
$$\mathrm{solve} \\ $$
Commented by student work last updated on 07/Jun/20
who can?
$$\mathrm{who}\:\mathrm{can}? \\ $$
Commented by Tinku Tara last updated on 07/Jun/20
Hi student work  please stop putting comments  such as who is intelligent, solve  who can etc.  Polite comments like pls help,  i need help for assignment  are fine.
$$\mathrm{Hi}\:\mathrm{student}\:\mathrm{work} \\ $$$$\mathrm{please}\:\mathrm{stop}\:\mathrm{putting}\:\mathrm{comments} \\ $$$$\mathrm{such}\:\mathrm{as}\:\mathrm{who}\:\mathrm{is}\:\mathrm{intelligent},\:\mathrm{solve} \\ $$$$\mathrm{who}\:\mathrm{can}\:\mathrm{etc}. \\ $$$$\mathrm{Polite}\:\mathrm{comments}\:\mathrm{like}\:\mathrm{pls}\:\mathrm{help}, \\ $$$$\mathrm{i}\:\mathrm{need}\:\mathrm{help}\:\mathrm{for}\:\mathrm{assignment} \\ $$$$\mathrm{are}\:\mathrm{fine}. \\ $$
Answered by mathmax by abdo last updated on 07/Jun/20
I =∫  ((xdx)/(sin^2 x−3)) =∫  ((xdx)/(−2−cos^2 x)) =−∫  ((xdx)/(2+(1/(1+tan^2 x))))  =−∫  ((x(1+tan^2 x))/(3+2tan^2 x))dx  changement tanx =u give  I =−∫  (((1+u^2 )arctanu)/(3+2u^2 )) (du/(1+u^2 )) =−∫  ((arctanu)/(3+2u^2 )) du  =−(1/3) ∫  ((arctanu)/(1+(2/3)u^2 )) du   and changement  (√(2/3))u =z give  I =−(1/3) ∫  ((arctan((√(3/2))z))/(1+z^2 ))×(√(3/2))dz =−(1/( (√6))) ∫  ((arctan((√(3/2))z))/(1+z^2 ))dz  let put  f(α) =∫_0 ^x  ((arctan(αz))/(1+z^2 )) dz⇒  f^′ (α) =∫_0 ^x  (z/((1+z^2 )(1+α^2 z^2 ))) dz  =_(αz =u)    ∫_0 ^(αx)  (u/(α(1+(u^2 /α^2 ))(1+u^2 ))) (du/α)  =∫_0 ^(αx)  ((udu)/((u^2  +α^2 )(u^2  +1)))  this integral is solvable by decomposition  ...be continued....
$$\mathrm{I}\:=\int\:\:\frac{\mathrm{xdx}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}−\mathrm{3}}\:=\int\:\:\frac{\mathrm{xdx}}{−\mathrm{2}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:=−\int\:\:\frac{\mathrm{xdx}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}} \\ $$$$=−\int\:\:\frac{\mathrm{x}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{3}+\mathrm{2tan}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{tanx}\:=\mathrm{u}\:\mathrm{give} \\ $$$$\mathrm{I}\:=−\int\:\:\frac{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\mathrm{arctanu}}{\mathrm{3}+\mathrm{2u}^{\mathrm{2}} }\:\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:=−\int\:\:\frac{\mathrm{arctanu}}{\mathrm{3}+\mathrm{2u}^{\mathrm{2}} }\:\mathrm{du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\:\int\:\:\frac{\mathrm{arctanu}}{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\mathrm{u}^{\mathrm{2}} }\:\mathrm{du}\:\:\:\mathrm{and}\:\mathrm{changement}\:\:\sqrt{\frac{\mathrm{2}}{\mathrm{3}}}\mathrm{u}\:=\mathrm{z}\:\mathrm{give} \\ $$$$\mathrm{I}\:=−\frac{\mathrm{1}}{\mathrm{3}}\:\int\:\:\frac{\mathrm{arctan}\left(\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\mathrm{z}\right)}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }×\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\mathrm{dz}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\int\:\:\frac{\mathrm{arctan}\left(\sqrt{\frac{\mathrm{3}}{\mathrm{2}}}\mathrm{z}\right)}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\mathrm{dz} \\ $$$$\mathrm{let}\:\mathrm{put}\:\:\mathrm{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{x}} \:\frac{\mathrm{arctan}\left(\alpha\mathrm{z}\right)}{\mathrm{1}+\mathrm{z}^{\mathrm{2}} }\:\mathrm{dz}\Rightarrow \\ $$$$\mathrm{f}^{'} \left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{x}} \:\frac{\mathrm{z}}{\left(\mathrm{1}+\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}+\alpha^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \right)}\:\mathrm{dz}\:\:=_{\alpha\mathrm{z}\:=\mathrm{u}} \:\:\:\int_{\mathrm{0}} ^{\alpha\mathrm{x}} \:\frac{\mathrm{u}}{\alpha\left(\mathrm{1}+\frac{\mathrm{u}^{\mathrm{2}} }{\alpha^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}\:\frac{\mathrm{du}}{\alpha} \\ $$$$=\int_{\mathrm{0}} ^{\alpha\mathrm{x}} \:\frac{\mathrm{udu}}{\left(\mathrm{u}^{\mathrm{2}} \:+\alpha^{\mathrm{2}} \right)\left(\mathrm{u}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{solvable}\:\mathrm{by}\:\mathrm{decomposition} \\ $$$$…\mathrm{be}\:\mathrm{continued}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *