Menu Close

xdx-x-4-4x-2-5-




Question Number 151461 by peter frank last updated on 21/Aug/21
∫((xdx)/(x^4 +4x^2 +5))
$$\int\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{5}} \\ $$
Answered by puissant last updated on 30/Aug/21
I=∫(x/(x^4 +4x^2 +5))dx=∫(x/((x^2 +2)^2 −4+5))dx  =∫(x/((x^2 +2)^2 +1))dx=(1/2)∫((2x)/(1+(x^2 +2)^2 ))dx  =(1/2)arctan(x^2 +2)+C       ∴∵  I=(1/2)arctan(x^2 +2)+C..
$${I}=\int\frac{{x}}{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}}{dx}=\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}+\mathrm{5}}{dx} \\ $$$$=\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} +\mathrm{1}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}}{\mathrm{1}+\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({x}^{\mathrm{2}} +\mathrm{2}\right)+{C} \\ $$$$\:\:\:\:\:\therefore\because\:\:{I}=\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({x}^{\mathrm{2}} +\mathrm{2}\right)+{C}.. \\ $$
Commented by peter frank last updated on 21/Aug/21
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *