Menu Close

xf-x-f-x-2-f-2-2-f-8-




Question Number 188407 by HeferH last updated on 01/Mar/23
xf(x) = f(x + 2)  f(2) = 2  f(8) = ?
$${xf}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{2}\right) \\ $$$${f}\left(\mathrm{2}\right)\:=\:\mathrm{2} \\ $$$${f}\left(\mathrm{8}\right)\:=\:?\: \\ $$
Answered by horsebrand11 last updated on 01/Mar/23
(i) x f(x)=f(x+2)  (ii) (x−2)f(x−2)=f(x)   x=2⇒f(2)=0?
$$\left({i}\right)\:{x}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right) \\ $$$$\left({ii}\right)\:\left({x}−\mathrm{2}\right){f}\left({x}−\mathrm{2}\right)={f}\left({x}\right) \\ $$$$\:{x}=\mathrm{2}\Rightarrow{f}\left(\mathrm{2}\right)=\mathrm{0}?\:\: \\ $$
Answered by manxsol last updated on 01/Mar/23
xf(x)=f(x+2)    x=2        2f(2)=f(4)                      f(4)=4  x=4                   4f(4)=f(6)                     f(6)=16  x=6       6f(6)=f(8)                  6(16)=f(8)                   f(8)=96
$${xf}\left({x}\right)={f}\left({x}+\mathrm{2}\right) \\ $$$$ \\ $$$${x}=\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{2}{f}\left(\mathrm{2}\right)={f}\left(\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$${x}=\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{f}\left(\mathrm{4}\right)={f}\left(\mathrm{6}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{6}\right)=\mathrm{16} \\ $$$${x}=\mathrm{6}\:\:\:\:\:\:\:\mathrm{6}{f}\left(\mathrm{6}\right)={f}\left(\mathrm{8}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}\left(\mathrm{16}\right)={f}\left(\mathrm{8}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{8}\right)=\mathrm{96} \\ $$$$ \\ $$
Commented by mr W last updated on 01/Mar/23
you just took f(2)=2, but this is not  proved, even wrong, since f(2)=0.
$${you}\:{just}\:{took}\:{f}\left(\mathrm{2}\right)=\mathrm{2},\:{but}\:{this}\:{is}\:{not} \\ $$$${proved},\:{even}\:{wrong},\:{since}\:{f}\left(\mathrm{2}\right)=\mathrm{0}. \\ $$
Answered by mr W last updated on 01/Mar/23
xf(x)=f(x+2)  0×f(0)=f(2) ⇒f(2)=0  2×f(2)=f(4) ⇒f(4)=0  4×f(4)=f(6) ⇒f(6)=0  6×f(6)=f(8) ⇒f(8)=0  generally f(2n)=0
$${xf}\left({x}\right)={f}\left({x}+\mathrm{2}\right) \\ $$$$\mathrm{0}×{f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}\right)\:\Rightarrow{f}\left(\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{2}×{f}\left(\mathrm{2}\right)={f}\left(\mathrm{4}\right)\:\Rightarrow{f}\left(\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{4}×{f}\left(\mathrm{4}\right)={f}\left(\mathrm{6}\right)\:\Rightarrow{f}\left(\mathrm{6}\right)=\mathrm{0} \\ $$$$\mathrm{6}×{f}\left(\mathrm{6}\right)={f}\left(\mathrm{8}\right)\:\Rightarrow{f}\left(\mathrm{8}\right)=\mathrm{0} \\ $$$${generally}\:{f}\left(\mathrm{2}{n}\right)=\mathrm{0} \\ $$
Commented by manxsol last updated on 01/Mar/23
dato f(2)=2  0×f(0)=f(2)⇒f(2)=0  f(2) has two   imagen⇒f no is funtion.  i am worked with funtion   not with relation
$${dato}\:{f}\left(\mathrm{2}\right)=\mathrm{2} \\ $$$$\mathrm{0}×{f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}\right)\Rightarrow{f}\left(\mathrm{2}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{2}\right)\:{has}\:{two} \\ $$$$\:{imagen}\Rightarrow{f}\:{no}\:{is}\:{funtion}. \\ $$$${i}\:{am}\:{worked}\:{with}\:{funtion} \\ $$$$\:{not}\:{with}\:{relation} \\ $$$$ \\ $$
Commented by manxsol last updated on 01/Mar/23
0 cannot be in the domain   of the given funtion.the   function goes through (2,2).  I dont have to try it .
$$\mathrm{0}\:{cannot}\:{be}\:{in}\:{the}\:{domain}\: \\ $$$${of}\:{the}\:{given}\:{funtion}.{the} \\ $$$$\:{function}\:{goes}\:{through}\:\left(\mathrm{2},\mathrm{2}\right). \\ $$$${I}\:{dont}\:{have}\:{to}\:{try}\:{it}\:. \\ $$
Commented by mr W last updated on 01/Mar/23
f(2)=2 can not be obtained, even when  x≠0.
$${f}\left(\mathrm{2}\right)=\mathrm{2}\:{can}\:{not}\:{be}\:{obtained},\:{even}\:{when} \\ $$$${x}\neq\mathrm{0}. \\ $$
Commented by manxsol last updated on 01/Mar/23
that is  very good and true   answer.Grateful.
$${that}\:{is}\:\:{very}\:{good}\:{and}\:{true} \\ $$$$\:{answer}.{Grateful}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *